

$\begin{aligned} & \text { 2(i) When } x=0.5, y=1.1180 \\ & \Rightarrow \quad A \approx 0.25 / 2\{1+1.4142+2(1.0308+1.1180+1.25)\} \\ & =0.25 \times 4.6059=1.151475 \\ & =1.151(3 \text { d.p. })^{*} \end{aligned}$	B1 M1 E1 [3]	4dp (0.125 x 9.2118) need evidence
(ii) Explain that the area is an over-estimate. or The curve is below the trapezia, so the area is an over- estimate. This becomes less with more strips. or Greater number of strips improves accuracy so becomes less	B1 B1 [2]	or use a diagram to show why
$\text { (iii) } \begin{aligned} V & =\int_{0}^{1} \pi y^{2} d x \\ & =\int_{0}^{1} \pi\left(1+x^{2}\right) d x \\ & =\pi\left[\left(x+x^{3} / 3\right)\right]_{0}^{1} \\ & =1 \frac{1}{3} \pi \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	allow limits later $x+x^{3} / 3$ exact

Question			Answer	Marks	Guidance
3	(a)		$\begin{aligned} & V=\int_{0}^{2} \pi y^{2} \mathrm{~d} x=\int_{0}^{2} \pi\left(1+\mathrm{e}^{2 x}\right) \mathrm{d} x \\ & =\pi\left[x+\frac{1}{2} \mathrm{e}^{2 x}\right]_{0}^{2} \\ & =\pi\left(2+1 / 2 \mathrm{e}^{4}-1 / 2\right) \\ & =1 / 2 \pi\left(3+\mathrm{e}^{4}\right) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { B1 } \\ \text { DM1 } \\ \\ \text { A1 } \\ \text { [4] } \end{gathered}$	$\int_{0}^{2} \pi\left(1+\mathrm{e}^{2 x}\right) \mathrm{d} x$ limits must appear but may be later condone omission of $d x$ if intention clear $\left[x+\frac{1}{2} \mathrm{e}^{2 x}\right] \quad$ independent of π and limits dependent on first M1.Need both limits substituted in their integral of the form $a x+b e^{2 x}$, where a, b non-zero constants. Accept answers including e^{0} for M1. Condone absence of π for M1 at this stage cao exact only
3	(b)	(i)	$\begin{aligned} x & =0, y=1.4142 ; x=2, y=7.4564 \\ A & =0.5 / 2\{(1.4142+7.4564) \\ & =6.926 \quad+2(1.9283+2.8 \end{aligned}$	B1 M1 A1 [3]	1.414, 7.456 or better correct formula seen (can be implied by correct intermediate step eg 27.7038../4) 6.926 or 6.93 (do not allow more dp)
3	(b)	(ii)	8 strips: $6.823,16$ strips: 6.797 Trapezium rule overestimates this area, but the overestimate gets less as the no of strips increases.	B1 [1]	oe

Question		Answer	Marks	Guidance
4	(i)	$\begin{aligned} & 1,0.6186,0 \\ & A \approx(\pi / 16)\{1+0+2(0.9612+0.8409+0.6186)\} \\ & \quad=1.147(3 \mathrm{dp}) \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [3] } \\ & \hline \end{aligned}$	4dp (or more) ft their table. Need to see trapezium rule. cao
4	(ii)	The estimate will increase, because the trapezia will be below but closer to the curve, reducing the error.	B1 [1]	o.e., or an illustration using the curve full answer required

5(i)							$\begin{aligned} & \text { B2,1,0 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [4] } \end{aligned}$	table values formula 6.5 or better www
	x	-	-1	0	1	2		
	y	1.0655	1.1696	1.4142	1.9283	2.8964		
$\begin{aligned} A & \approx 1 / 2 \times 1\{1.0655+2.8964+2(1.1696+1.4142+1.9283)\} \\ & =6.493 \end{aligned}$								
(ii) Smaller, as the trapezium rule is an over-estimate in this case and the error is less with more strips							B1 B1 [2]	

$\text { 6(i) } \begin{aligned} A & \approx 0.5\left[\frac{(1.1696+1.0655}{2}+1.1060\right] \\ & =1.11(3 \mathrm{~s} \mathrm{f.}) \end{aligned}$	M1 A1 cao [2]	Correct expression for trapezium rule
$\text { (ii) } \begin{aligned} \left(1+e^{-x}\right)^{1 / 2} & =1+\frac{1}{2} e^{-x}+\frac{\frac{1}{2} \cdot-\frac{1}{2}}{2!}\left(e^{-x}\right)^{2}+\ldots \\ & \approx 1+\frac{1}{2} e^{-x}-\frac{1}{8} e^{-2 x *} \end{aligned}$	M1 A1 E1 [3]	Binomial expansion with $p=1 / 2$ Correct coeffs
$\text { (iii) } \begin{aligned} I & =\int_{1}^{2}\left(1+\frac{1}{2} e^{-x}-\frac{1}{8} e^{-2 x}\right) d x \\ & =\left[x-\frac{1}{2} e^{-x}+\frac{1}{16} e^{-2 x}\right]_{1}^{2} \\ & =\left(2-\frac{1}{2} e^{-2}+\frac{1}{16} e^{-4}\right)-\left(1-\frac{1}{2} e^{-1}+\frac{1}{16} e^{-2}\right) \\ & =1.9335-0.8245 \\ & =1.11 \text { (3 s.f. }) \end{aligned}$	M1 A1 A1 [3]	integration substituting limits into correct expression

