Question		on	Answer	Marks	Guidance
1	(i)		x00.19630.39270.58900.7854y00.44930.67920.94981.3254	B2,1,0	For values 0.4493,0.6792,0.9498 (4dp or better soi) [accept truncated to 4 figs after dec point]
					[cannot assume values of form $(\pi/16)^3 + \sqrt{(\sin \pi/16)}$ are correct unless followed by correct total at some later stage as some will be in degree mode]
			$A = (\pi/32) \left[(0 + 1.3254) + 2(0.4493 + 0.6792 + 0.9498) \right]$	M1	Use of the trapezium rule. Trapezium rule formula for 4 strips must be seen, with or without substitution seen. Correct <i>h</i> must be soi. [accept separate trapezia added]
			= 0.538	A1	0.538 www 3dp only (NB using 1.325 is ww)
					SC B0 0.538 without any working as no indication of strips or method used
					SC B1 0.538 with some indication of 4 strips but no values seen
					Correct values followed by correct formula for 4 strips, with or without substitution seen, then $A=0.538$ scores 4/4.
					Correct formula for 4 strips and values of form $((\pi/16)^3 + \sqrt{(\sin\pi/16)}$ followed by correct answer scores 4/4 (or ³ / ₄ with wrong dp)
					NB Values given in the table to only 3dp give apparently the correct answer, but scores B0,M1A0 ww
				[4]	
1	(ii)		Not possible to say, eg some trapezia are above and some below curve oe.	B1	Need a reason. Must be without further calculation.
				[1]	
				[1]	

2(i) When $x = 0.5$, $y = 1.1180$ $\Rightarrow A \approx 0.25/2\{1+1.4142+2(1.0308+1.1180+1.25)\}$ $= 0.25 \times 4.6059 = 1.151475$ $= 1.151 (3 \text{ d.p.})^*$	B1 M1 E1 [3]	4dp (0.125 x 9.2118) need evidence
 (ii) Explain that the area is an over-estimate. or The curve is below the trapezia, so the area is an over- estimate. This becomes less with more strips. or Greater number of strips improves accuracy so becomes less 	B1 B1 [2]	or use a diagram to show why
(iii) $V = \int_0^1 \pi y^2 dx$ $= \int_0^1 \pi (1 + x^2) dx$ $= \pi \left[(x + x^3 / 3) \right]_0^1$ $= 1\frac{1}{3}\pi$	M1 B1 A1 [3]	allow limits later $x + x^{3}/3$ exact

Question		tion	Answer		Guidance			
3	(a)	(a) $V = \int_0^2 \pi y^2 dx = \int_0^2 \pi (1 + e^{2x}) dx$		M1	$\int_0^2 \pi (1 + e^{2x}) dx$ limits must appear but may be later			
			$=\pi\left[x+\frac{1}{2}e^{2x}\right]_{0}^{2}$	B1	condone omission of dx if intention clear $\left[x + \frac{1}{2}e^{2x}\right]$ independent of π and limits			
			$= \pi (2 + \frac{1}{2} e^4 - \frac{1}{2})$	DM1	dependent on first M1.Need both limits substituted in their integral of the form $ax + be^{2x}$, where <i>a</i> , <i>b</i> non-zero constants. Accept answers including e^0 for M1. Condone absence of π for M1 at this stage			
			$= \frac{1}{2} \pi (3 + e^4)$	A1 [4]	cao exact only			
3	(b)	(i)	x = 0, y = 1.4142; x = 2, y = 7.4564	B1	1.414, 7.456 or better			
			$A = 0.5/2\{(1.4142 + 7.4564) + 2(1.9283 + 2.8964 + 4.5919)\}$	M1	correct formula seen (can be implied by correct intermediate step eg 27.7038/4)			
			= 6.926	A1 [3]	6.926 or 6.93 (do not allow more dp)			
3	(b)	(ii)	8 strips: 6.823, 16 strips: 6.797					
			Trapezium rule overestimates this area, but the overestimate gets less as the no of strips increases.	B1 [1]	oe			

Question		on Answer	Marks	Guidance	
4	(i)	1, 0.6186, 0 $A \approx (\pi/16)\{1 + 0+2(0.9612+0.8409+0.6186)\}$	B1 M1	4dp (or more) ft their table. Need to see trapezium rule.	
		= 1.147 (3 dp)	A1 [3]	cao	
4	(ii)	The estimate will increase, because the trapezia will be below but closer to the curve, reducing the error.	B1 [1]	o.e., or an illustration using the curve full answer required	

5(i)									
	x	-	-1	0	1	2			
	у	1.0655	1.1696	1.4142	1.9283	2.8964		DO 1.0	
$A \approx \frac{1}{2} \times 1\{1.0655 + 2.8964 + 2(1.1696 + 1.4142 + 1.9283)\}$ = 6.493								M1 A1 [4]	formula 6.5 or better www
(ii) Smaller, as the trapezium rule is an over-estimate in this case and the error is less with more strips								B1 B1 [2]	

6(i) $A \approx 0.5[\frac{(1.1696 + 1.0655)}{2} + 1.1060]$ = 1.11 (3 s f.)	M1 A1 cao [2]	Correct expression for trapezium rule
(ii) $(1+e^{-x})^{1/2} = 1 + \frac{1}{2}e^{-x} + \frac{\frac{1}{2} \cdot -\frac{1}{2}}{2!}(e^{-x})^2 + \dots$ $\approx 1 + \frac{1}{2}e^{-x} - \frac{1}{8}e^{-2x} *$	M1 A1 E1 [3]	Binomial expansion with $p = \frac{1}{2}$ Correct coeffs
(iii) $I = \int_{1}^{2} (1 + \frac{1}{2}e^{-x} - \frac{1}{8}e^{-2x})dx$ $= \left[x - \frac{1}{2}e^{-x} + \frac{1}{16}e^{-2x}\right]_{1}^{2}$ $= (2 - \frac{1}{2}e^{-2} + \frac{1}{16}e^{-4}) - (1 - \frac{1}{2}e^{-1} + \frac{1}{16}e^{-2})$ $= 1.9335 - 0.8245$ $= 1.11 (3 \text{ s.f.})$	M1 A1 A1 [3]	integration substituting limits into correct expression