Core 4 Algebra & Functions Questions

- 1 (a) The polynomial f(x) is defined by $f(x) = 3x^3 + 2x^2 7x + 2$.
 - (i) Find f(1). (1 mark)
 - (ii) Show that f(-2) = 0. (1 mark)
 - (iii) Hence, or otherwise, show that

$$\frac{(x-1)(x+2)}{3x^3 + 2x^2 - 7x + 2} = \frac{1}{ax+b}$$

where a and b are integers.

(3 marks)

(b) The polynomial g(x) is defined by $g(x) = 3x^3 + 2x^2 - 7x + d$.

When g(x) is divided by (3x - 1), the remainder is 2. Find the value of d. (3 marks)

(c) Given that $\frac{2x^2 - 3}{(3 - 2x)(1 - x)^2}$ can be written in the form $\frac{A}{(3 - 2x)} + \frac{B}{(1 - x)} + \frac{C}{(1 - x)^2}$,

find the values of A, B and C.

(5 marks)

- 1 (a) The polynomial p(x) is defined by $p(x) = 6x^3 19x^2 + 9x + 10$.
 - (i) Find p(2). (1 mark)
 - (ii) Use the Factor Theorem to show that (2x + 1) is a factor of p(x). (3 marks)
 - (iii) Write p(x) as the product of three linear factors. (2 marks)
 - (b) Hence simplify $\frac{3x^2 6x}{6x^3 19x^2 + 9x + 10}$. (2 marks)
- 3 (a) Given that $\frac{9x^2 6x + 5}{(3x 1)(x 1)}$ can be written in the form $3 + \frac{A}{3x 1} + \frac{B}{x 1}$, where A and B are integers, find the values of A and B. (4 marks)
 - (b) Hence, or otherwise, find $\int \frac{9x^2 6x + 5}{(3x 1)(x 1)} dx$. (4 marks)

- 2 The polynomial f(x) is defined by $f(x) = 2x^3 7x^2 + 13$.
 - (a) Use the Remainder Theorem to find the remainder when f(x) is divided by (2x-3).

 (2 marks)
 - (b) The polynomial g(x) is defined by $g(x) = 2x^3 7x^2 + 13 + d$, where d is a constant. Given that (2x - 3) is a factor of g(x), show that d = -4.
 - (c) Express g(x) in the form $(2x-3)(x^2+ax+b)$. (2 marks)
- 4 (a) (i) Express $\frac{3x-5}{x-3}$ in the form $A + \frac{B}{x-3}$, where A and B are integers. (2 marks)
 - (ii) Hence find $\int \frac{3x-5}{x-3} dx$. (2 marks)
 - (b) (i) Express $\frac{6x-5}{4x^2-25}$ in the form $\frac{P}{2x+5} + \frac{Q}{2x-5}$, where P and Q are integers. (3 marks)
 - (ii) Hence find $\int \frac{6x-5}{4x^2-25} dx$. (3 marks)
- 1 (a) Find the remainder when $2x^2 + x 3$ is divided by 2x + 1. (2 marks)
 - (b) Simplify the algebraic fraction $\frac{2x^2 + x 3}{x^2 1}$. (3 marks)
- (b) Express $\frac{1+4x}{(1+x)(1+3x)}$ in partial fractions. (3 marks)

Core 4 Algebra & Functions Answers

1(a)(i)
 f (1) = 0
 B1
 1

 (ii)

$$f(-2) = -24 + 8 + 14 + 2 = 0$$
 B1
 1

 (iii)
 $\frac{(x-1)(x+2)}{3x^3 + 2x^2 - 7x + 2} = \frac{(x-1)(x+2)}{(x-1)(x+2)(ax+b)}$
 B1
 Recognising $(x-1)$, $(x+2)$ as factors

 B1
 B1
 3
 a
 b

 Or By division M1 attempt started
 M1 complete division
 A1 Correct answers

 (b)
 Use $\frac{1}{3}$
 B1
 Remainder Th^M with $\pm \frac{1}{3} \pm 3$

 d = 4
 A1F
 3
 Ft on $-\frac{1}{3}$ (answer $-\frac{4}{9}$)
 Or by division M1 M1 A1 as above

5(c)
$$2x^2 - 3 =$$
 $A(1-x)^2 + B(3-2x)(1-x) + C(3-2x)$ M1

 $x = 1 \quad -1 = C \times 1 \quad x = \frac{3}{2} \quad \frac{3}{2} = A \times \frac{1}{4}$ M1

 $C = -1 \quad A = 6$
 C

3(a)	$9x^{2} - 6x + 5$ $= 3(3x - 1)(x - 1) + A(x - 1) + B(3x - 1)$ $x = 1 \qquad x = \frac{1}{3}$ $B = 4 \qquad A = -6$	B1 M1		Or $3 + \frac{6x+2}{(3x-1)(x-1)}$ Substitute $x = 1$ or $x = \frac{1}{3}$
	B = 4 A = -6	A1A1	4	Or equivalent method (equating coefficients, simultaneous equations)
(b)	$\int = \int 3 - \frac{6}{3x - 1} + \frac{4}{x - 1} \mathrm{d}x$	M1		Attempt to use partial fractions
	= 3 <i>x</i>	B1		
	$-2\ln(3x-1)+4\ln(x-1)(+c)$	M1		$p\ln(3x-1) + q\ln(x-1)$
		A1F	4	Condone missing brackets Follow through on A and B; brackets needed.
	Total		8	

2(a)	$f\left(\frac{3}{2}\right) = 2\left(\frac{3}{2}\right)^3 - 7\left(\frac{3}{2}\right)^2 + 13$	M1		Substitute $\pm \frac{3}{2}$ in $f(x)$
	= 4	A1	2	
(b)	$g\left(\frac{3}{2}\right) = 0 \Rightarrow d + 4 = 0 \Rightarrow d = -4$	M1A1	2	AG (convincingly obtained) SC Written explanation with $g\left(\frac{3}{2}\right) = 0$ not seen/clear E2,1,0
(c)	a=-2, $b=-3$	B1, B1	2	Inspection expected By division: M1 – complete method A1 CAO Multiply out and compare coefficients: M1 – evidence of use A1 – both a and b correct
	Total		6	

M1

A1F

3

ft on P and Q; must have brackets

(b)
$$\frac{1+4x}{(1+x)(1+3x)} = \frac{A}{1+x} + \frac{B}{1+3x}$$

$$1+4x = A(1+3x) + B(1+x)$$

$$x = -1, x = -\frac{1}{3}$$

$$A = \frac{3}{2}, B = -\frac{1}{2}$$
Alt:
$$\frac{1+4x}{(1+x)(1+3x)} = \frac{A}{1+x} + \frac{B}{1+3x}$$

$$1+4x = A(1+3x) + B(1+x)$$

$$A = \frac{1}{2}, B = \frac{A}{1+x} + \frac{B}{1+3x}$$

$$1+4x = A(1+3x) + B(1+x)$$

$$A + B = 1, 3A + B = 4$$

$$A = \frac{3}{2}, B = -\frac{1}{2}$$
(M1) Set up and solve
$$A = \frac{3}{2}, B = -\frac{1}{2}$$
(M1) Set up and solve
$$A = \frac{3}{2}, B = -\frac{1}{2}$$
(M1) Set up and solve
$$A = \frac{3}{2}, B = -\frac{1}{2}$$
(M2) Set up and solve
$$A = \frac{3}{2}, B = -\frac{1}{2}$$
(M3) A and B both correct