Solution Bank

Chapter review 7

1 a
$$\mathbf{R} = -3\mathbf{i} + 7\mathbf{j} + \mathbf{i} - \mathbf{j}$$

 $= -2\mathbf{i} + 6\mathbf{j}$
 $|\mathbf{R}| = \sqrt{2^2 + 6^2}$
 $= \sqrt{40}$
 $= 2\sqrt{10}$

The magnitude of **R** is $2\sqrt{10}$ N

b
$$\tan \theta = \frac{1}{3}$$

 $\theta = \tan^{-1} \frac{1}{3}$
= 18° (nearest degree)

2 a (Path of S) =
$$(4\mathbf{i} - 6\mathbf{j}) - (-2\mathbf{i} - 4\mathbf{j})$$

= $6\mathbf{i} - 2\mathbf{j}$

$$\tan \theta = \frac{1}{3} \Rightarrow \theta = 18.43...^{\circ}$$

Bearing = $90^{\circ} + \theta = 108^{\circ}$

b Expressing velocity, **v**, in km h⁻¹: $\mathbf{v} = (6\mathbf{i} - 2\mathbf{j}) \times \frac{60}{40}$ $\mathbf{v} = 9\mathbf{i} - 3\mathbf{j}$ Then the speed is: $\sqrt{9^2 + (-3)^2} = \sqrt{90} = 3\sqrt{10}$

$$\sqrt{9^2 + (-3)^2} = \sqrt{90} = 3\sqrt{10}$$
$$= 9.49 \text{ km h}^{-1} (3 \text{ s.f.})$$

3

$$\mathbf{a} \quad \overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CM}$$
$$= \mathbf{a} + \mathbf{b} - \frac{8}{5} \mathbf{a}$$
$$= \mathbf{b} - \frac{3}{5} \mathbf{a}$$

3 **b**
$$\overrightarrow{BD} = \overrightarrow{BC} + \overrightarrow{CD}$$

= **b** - 4**a**

$$\mathbf{c} \quad \overrightarrow{MB} = \overrightarrow{MC} + \overrightarrow{CB}$$
$$= \frac{8}{5} \mathbf{a} - \mathbf{b}$$

$$\mathbf{d} \quad \overrightarrow{DA} = \overrightarrow{DC} + \overrightarrow{CB} + \overrightarrow{BA}$$

$$= 4\mathbf{a} - \mathbf{b} - \mathbf{a}$$

$$= 3\mathbf{a} - \mathbf{b}$$

4 As the vectors are parallel

$$5\mathbf{a} + k\mathbf{b} = \frac{5}{8}(8\mathbf{a} + 2\mathbf{b})$$
$$k = \frac{5}{8} \times 2$$
$$= \frac{5}{4}$$

5 **a**
$$\mathbf{a} + \mathbf{b} + \mathbf{c} = \begin{pmatrix} 7 \\ 4 \end{pmatrix} + \begin{pmatrix} 10 \\ -2 \end{pmatrix} + \begin{pmatrix} -5 \\ -3 \end{pmatrix}$$
$$= \begin{pmatrix} 12 \\ -1 \end{pmatrix}$$

$$\mathbf{b} \quad \mathbf{a} - 2\mathbf{b} + \mathbf{c} = \begin{pmatrix} 7 \\ 4 \end{pmatrix} - 2 \begin{pmatrix} 10 \\ -2 \end{pmatrix} + \begin{pmatrix} -5 \\ -3 \end{pmatrix}$$
$$= \begin{pmatrix} -18 \\ 5 \end{pmatrix}$$

$$\mathbf{c} \quad 2\mathbf{a} + 2\mathbf{b} - 3\mathbf{c} = 2 \begin{pmatrix} 7 \\ 4 \end{pmatrix} + 2 \begin{pmatrix} 10 \\ -2 \end{pmatrix} - 3 \begin{pmatrix} -5 \\ -3 \end{pmatrix}$$
$$= \begin{pmatrix} 49 \\ 13 \end{pmatrix}$$

6 **a**
$$4\mathbf{i} - 3\mathbf{j} + 2p\mathbf{i} - p\mathbf{j} = \lambda(2\mathbf{i} - 3\mathbf{j})$$

 $(4 + 2p)\mathbf{i} - (3 + p)\mathbf{j} = 2\lambda\mathbf{i} - 3\lambda\mathbf{j}$

Equating coefficients:

$$4 + 2p = 2\lambda \text{ and } 3 + p = 3\lambda$$

Solving simultaneously:

Rearranging the $3 + p = 3\lambda$

$$p=3\lambda-3$$

Using substitution:

$$4 + 2(3\lambda - 3) = 2\lambda$$
$$4 + 6\lambda - 6 = 2\lambda$$
$$4\lambda = 2$$
$$\lambda = \frac{1}{2}$$

$$p = -\frac{3}{2}$$

b
$$\mathbf{a} + \mathbf{b} = 4\mathbf{i} - 3\mathbf{j} - 3\mathbf{i} + \frac{3}{2}\mathbf{j}$$

= $\mathbf{i} - \frac{3}{2}\mathbf{j}$

7
$$\cos 55^\circ = \frac{p}{15}$$

 $p = 15 \cos 55^\circ$
 $p = 8.6$

Using Pythagoras' theorem:

$$q = \sqrt{15^2 - 8.6^2}$$
= 12.3
 $p = 8.6$ and $q = 12.3$

8
$$|3\mathbf{i} - k\mathbf{j}| = \sqrt{3^2 + k^2}$$

 $= \sqrt{9 + k^2}$
 $= 3\sqrt{5}$
 $\sqrt{9 + k^2} = \sqrt{45}$
 $k^2 + 9 = 45$
 $k^2 = 36$
 $k = \pm 6$

9 **a**
$$\overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AN}$$
 or $\overrightarrow{ON} = \overrightarrow{OM} + \overrightarrow{MN}$
 $\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB}$
 $= -\mathbf{a} + \mathbf{b}$
 $\overrightarrow{MN} = \lambda \mathbf{b}$

Using similar triangles:

$$\overrightarrow{AN} = \lambda (-\mathbf{a} + \mathbf{b})$$
Using $\overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AN}$

$$\overrightarrow{ON} = \mathbf{a} + \lambda (-\mathbf{a} + \mathbf{b}) = (1 - \lambda)\mathbf{a} + \lambda \mathbf{b}$$

Using
$$\overrightarrow{ON} = \overrightarrow{OM} + \overrightarrow{MN}$$

 $\overrightarrow{ON} = \frac{3}{5}\mathbf{a} + \lambda\mathbf{b}$
 $(1 - \lambda)\mathbf{a} + \lambda\mathbf{b} = \frac{3}{5}\mathbf{a} + \lambda\mathbf{b}$

Equating coefficients:

$$1 - \lambda = \frac{3}{5}$$
$$\lambda = \frac{2}{5}$$
$$\overrightarrow{ON} = \frac{3}{5}\mathbf{a} + \frac{2}{5}\mathbf{b}$$

$$\mathbf{b} \quad \overrightarrow{MN} = \lambda \mathbf{b}$$
$$= \frac{2}{5} \mathbf{b}$$

c
$$\overrightarrow{AN} = \frac{2}{5}(-\mathbf{a} + \mathbf{b})$$

 $\overrightarrow{AB} = -\mathbf{a} + \mathbf{b}$
Therefore, $AN: NB = 2: 3$

10 Coordinates of M are (3,5,4)

Distance from *M* to *C*
=
$$\sqrt{(5-3)^2 + (8-5)^2 + (7-4)^2}$$

= $\sqrt{4+9+9} = \sqrt{22}$

11 Distance from *P* to *Q*

$$= \sqrt{((a-2)-2)^2 + (6-3)^2 + (7-a)^2}$$

$$= \sqrt{a^2 - 8a + 16 + 9 + 49 - 14a + a^2}$$

$$= \sqrt{2a^2 - 22a + 74} = \sqrt{14}$$

$$2a^{2}-22a+74=14$$

$$a^{2}-11a+30=0$$

$$(a-5)(a-6)=0$$

$$a=5 \text{ or } a=6$$

12
$$|\overrightarrow{AB}| = \sqrt{3^2 + t^2 + 5^2} = \sqrt{t^2 + 34}$$

 $\sqrt{t^2 + 34} = 5\sqrt{2}$
 $t^2 + 34 = 50$
 $t^2 = 16$
 $t = 4$ (since $t > 0$)

So
$$\overrightarrow{AB} = -3\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}$$

$$6\mathbf{i} - 8\mathbf{j} - \frac{5}{2}t\mathbf{k} = 6\mathbf{i} - 8\mathbf{j} - 10\mathbf{k}$$
$$= -2\overrightarrow{AB}$$

So \overrightarrow{AB} is parallel to $6\mathbf{i} - 8\mathbf{j} - \frac{5}{2}t\mathbf{k}$

13 a Let *O* be the fixed origin.

$$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP} = -3\mathbf{i} - 8\mathbf{j} + 3\mathbf{k}$$

$$\overrightarrow{PR} = \overrightarrow{OR} - \overrightarrow{OP} = -3\mathbf{i} - 9\mathbf{j} + 8\mathbf{k}$$

$$\overrightarrow{QR} = \overrightarrow{OR} - \overrightarrow{OQ} = -\mathbf{j} + 5\mathbf{k}$$

$$|\overrightarrow{PQ}| = \sqrt{9 + 64 + 9} = \sqrt{82}$$
$$|\overrightarrow{PR}| = \sqrt{9 + 81 + 64} = \sqrt{154}$$
$$|\overrightarrow{QR}| = \sqrt{1 + 25} = \sqrt{26}$$

$$\cos \angle QPR = \frac{82 + 154 - 26}{2 \times \sqrt{82} \times \sqrt{154}} = 0.9343...$$

$$\angle QPR = 20.87...^{\circ}$$

Area of triangle = $\frac{1}{2} \times \sqrt{82} \times \sqrt{154} \sin 20.87...^{\circ}$ = 20.0 (1 d.p.)

14 a
$$\overrightarrow{DE} = \overrightarrow{OE} - \overrightarrow{OD} = 4\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$$

 $\overrightarrow{EF} = \overrightarrow{OF} - \overrightarrow{OE} = -3\mathbf{i} - 4\mathbf{j} + 4\mathbf{k}$
 $\overrightarrow{FD} = \overrightarrow{OD} - \overrightarrow{OF} = -\mathbf{i} + \mathbf{j} - 8\mathbf{k}$

$$\begin{vmatrix} \overrightarrow{DE} | = \sqrt{16 + 9 + 16} = \sqrt{41} \\ | \overrightarrow{EF} | = \sqrt{9 + 16 + 16} = \sqrt{41} \\ | \overrightarrow{FD} | = \sqrt{1 + 1 + 64} = \sqrt{66} \end{vmatrix}$$

c Two sides are equal in length so the triangle is isosceles.

15 a
$$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP} = 9\mathbf{i} - 4\mathbf{j}$$

 $\overrightarrow{PR} = \overrightarrow{OR} - \overrightarrow{OP} = 7\mathbf{i} + \mathbf{j} - 3\mathbf{k}$
 $\overrightarrow{QR} = \overrightarrow{OR} - \overrightarrow{OQ} = -2\mathbf{i} + 5\mathbf{j} - 3\mathbf{k}$

b
$$\left| \overrightarrow{PQ} \right| = \sqrt{81 + 16} = \sqrt{97}$$

 $\left| \overrightarrow{PR} \right| = \sqrt{49 + 1 + 9} = \sqrt{59}$
 $\left| \overrightarrow{QR} \right| = \sqrt{4 + 25 + 9} = \sqrt{38}$

c
$$\angle QRP = 90^{\circ}$$
 so PQ is the hypotenuse.

$$\sin \angle PQR = \frac{\left| \overrightarrow{PR} \right|}{\left| \overrightarrow{PQ} \right|} = \sqrt{\frac{59}{97}} = 0.7799...$$

$$\angle POR = 51.3^{\circ}$$

16
$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = -2\mathbf{j} + \mathbf{k}$$

$$\left| \overline{AB} \right| = \sqrt{1+1} = \sqrt{2}$$

$$\left| \overline{BC} \right| = \sqrt{1+9+1} = \sqrt{11}$$

$$\left| \overline{AC} \right| = \sqrt{4+1} = \sqrt{5}$$

$$\cos \angle ABC = \frac{2+11-5}{2 \times \sqrt{2} \times \sqrt{11}} = 0.8528...$$

 \(\angle ABC = 31.5^\circ\)

$$\left| \overrightarrow{AB} \right| = \sqrt{36 + 4 + 121} = \sqrt{161}$$
$$\left| \overrightarrow{AC} \right| = \sqrt{225 + 64 + 25} = \sqrt{314}$$
$$\left| \overrightarrow{BC} \right| = \sqrt{81 + 100 + 36} = \sqrt{217}$$

$$\cos \angle ABC = \frac{161 + 217 - 314}{2 \times \sqrt{161} \times \sqrt{217}} = 0.1712...$$

$$\angle ABC = 80.14...^{\circ}$$

Area of triangle ABC= $\frac{1}{2} \times \sqrt{161} \times \sqrt{217} \times \sin \angle ABC$

Area of parallelogram ABCD= $\sqrt{161} \times \sqrt{217} \times \sin \angle ABC$ = $\sqrt{161} \times \sqrt{217} \times \sin 80.14...^{\circ}$ = 184 (3 s.f.)

18 a
$$|\overrightarrow{AB}| = \sqrt{4 + 25 + 9} = \sqrt{38}$$

 $|\overrightarrow{AC}| = \sqrt{4 + 25 + 9} = \sqrt{38}$

So *ABC* is an isosceles triangle. Therefore *DBC* is an isosceles triangle.

So \overrightarrow{AB} is parallel to \overrightarrow{CD} and \overrightarrow{AC} is parallel to \overrightarrow{BD} .

Let *O* be the fixed origin.

$$\overrightarrow{OD} = \overrightarrow{OC} + \overrightarrow{CD}$$

$$= \overrightarrow{OC} + \overrightarrow{AB}$$

$$= \overrightarrow{OC} + \overrightarrow{OB} - \overrightarrow{OA}$$

$$= \begin{pmatrix} 4 \\ -2 \\ -5 \end{pmatrix} + \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \\ -2 \end{pmatrix} = \begin{pmatrix} 2 \\ -7 \\ -2 \end{pmatrix}$$

Coordinates of D are (2, -7, -2)

b ABCD is a parallelogram with four sides of equal length. It is a rhombus.

$$\mathbf{c} \quad |\overrightarrow{BC}| = \sqrt{16 + 36} = \sqrt{52}$$

$$\cos \angle BAC = \frac{38 + 38 - 52}{2 \times \sqrt{38} \times \sqrt{38}} = 0.3157...$$

$$\angle BAC = 71.59 \quad ^{\circ}$$

Area of triangle ABC= $\frac{1}{2} \times \sqrt{38} \times \sqrt{38} \times \sin \angle ABC$

Area of parallelogram ABCD= $\sqrt{38} \times \sqrt{38} \times \sin \angle ABC$ = $\sqrt{38} \times \sqrt{38} \times \sin 71.59...^{\circ}$ = 36.1 (3 s.f.)

Solution Bank

19
$$\overrightarrow{OP} = \frac{1}{2} \overrightarrow{OC} = \frac{1}{2} \mathbf{c}$$

 $\overrightarrow{AB} = \mathbf{b} - \mathbf{a}$
 $\overrightarrow{OQ} = \overrightarrow{OA} + \frac{1}{2} \overrightarrow{AB} = \mathbf{a} + \frac{1}{2} (\mathbf{b} - \mathbf{a})$
 $\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP} = \frac{1}{2} (\mathbf{a} + \mathbf{b} - \mathbf{c})$

$$\overrightarrow{OR} = \frac{1}{2} \overrightarrow{OA} = \frac{1}{2} \mathbf{a}$$

$$\overrightarrow{BC} = \mathbf{c} - \mathbf{b}$$

$$\overrightarrow{OS} = \overrightarrow{OB} + \frac{1}{2} \overrightarrow{BC} = \mathbf{b} + \frac{1}{2} (\mathbf{c} - \mathbf{b})$$

$$\overrightarrow{RS} = \overrightarrow{OS} - \overrightarrow{OR} = \frac{1}{2} (-\mathbf{a} + \mathbf{b} + \mathbf{c})$$

$$\overrightarrow{OT} = \frac{1}{2}\overrightarrow{OB} = \frac{1}{2}\mathbf{b}$$

$$\overrightarrow{AC} = \mathbf{c} - \mathbf{a}$$

$$\overrightarrow{OU} = \overrightarrow{OA} + \frac{1}{2}\overrightarrow{AC} = \mathbf{a} + \frac{1}{2}(\mathbf{c} - \mathbf{a})$$

$$\overrightarrow{TU} = \overrightarrow{OU} - \overrightarrow{OT} = \frac{1}{2}(\mathbf{a} - \mathbf{b} + \mathbf{c})$$

Suppose there is a point of intersection, X, of PO, RS and TU.

$$\overrightarrow{PX} = r\overrightarrow{PQ} = \frac{r}{2}(\mathbf{a} + \mathbf{b} - \mathbf{c})$$

$$\overrightarrow{RX} = s\overrightarrow{RS} = \frac{s}{2}(-\mathbf{a} + \mathbf{b} + \mathbf{c})$$

$$\overrightarrow{TX} = t\overrightarrow{TU} = \frac{t}{2}(\mathbf{a} - \mathbf{b} + \mathbf{c})$$

for scalars r, s and t

But
$$\overrightarrow{RX} = \overrightarrow{RO} + \overrightarrow{OP} + \overrightarrow{PX}$$

$$= -\frac{1}{2}\mathbf{a} + \frac{1}{2}\mathbf{c} + \frac{r}{2}(\mathbf{a} + \mathbf{b} - \mathbf{c})$$
so $\frac{s}{2}(-\mathbf{a} + \mathbf{b} + \mathbf{c}) = -\frac{1}{2}\mathbf{a} + \frac{1}{2}\mathbf{c} + \frac{r}{2}(\mathbf{a} + \mathbf{b} - \mathbf{c})$

$$s(-\mathbf{a} + \mathbf{b} + \mathbf{c}) = (r - 1)\mathbf{a} + r\mathbf{b} + (1 - r)\mathbf{c}$$

Comparing coefficients of b and c: s = r and s = 1 - r

Hence
$$r = s = \frac{1}{2}$$

Also
$$\overrightarrow{TX} = \overrightarrow{TO} + \overrightarrow{OP} + \overrightarrow{PX}$$

$$= -\frac{1}{2}\mathbf{b} + \frac{1}{2}\mathbf{c} + \frac{1}{4}(\mathbf{a} + \mathbf{b} - \mathbf{c})$$
so $\frac{1}{2}t(\mathbf{a} - \mathbf{b} + \mathbf{c}) = -\frac{1}{2}\mathbf{b} + \frac{1}{2}\mathbf{c} + \frac{1}{4}(\mathbf{a} + \mathbf{b} - \mathbf{c})$

$$t(\mathbf{a} - \mathbf{b} + \mathbf{c}) = \frac{1}{2}(\mathbf{a} - \mathbf{b} + \mathbf{c})$$
Hence $t = \frac{1}{2}$

So the point X is the midpoint of all three line segments PQ, RS and TU. Therefore the line segments meet at a point and bisect each other.

20 Total force on particle = $\mathbf{F} = \mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3$ = $((b+1)\mathbf{i} + (4-b)\mathbf{j} + (7-b)\mathbf{k})\mathbf{N}$

$$|\mathbf{F}| = \sqrt{(b+1)^2 + (4-b)^2 + (7-b)^2}$$

$$= \sqrt{b^2 + 2b + 1 + 16 - 8b + b^2 + 49 - 14b + b^2}$$

$$= \sqrt{3b^2 - 20b + 66}$$

 $|\mathbf{F}| = m|\mathbf{a}|$ $\Rightarrow \sqrt{3b^2 - 20b + 66} = 2 \times 3.5 = 7$ $3b^2 - 20b + 66 = 49$ $3b^2 - 20b + 17 = 0$ (b-1)(3b-17) = 0 $b = 1 \text{ or } b = \frac{17}{3}$

- 21 a Air resistance acts in opposition to the motion of the BASE jumper. The motion downwards will be greater than the motion in the other directions.
 - **b** Gravitational force downwards $= 50 \times 9.8 = 490 \text{ N}$

Total force on BASE jumper = $\mathbf{W} + \mathbf{F} - 490\mathbf{k}$ = $(16\mathbf{i} + 13\mathbf{j} - 40\mathbf{k})$ N

c
$$|16\mathbf{i} + 13\mathbf{j} - 40\mathbf{k}| = \sqrt{256 + 169 + 1600}$$

= $\sqrt{2025} = 45 \text{ N}$
Acceleration = $\frac{45}{50} = \frac{9}{10} \text{ m s}^{-2}$

Using
$$s = ut + \frac{1}{2}at^2$$
:
 $180 = 0 + \frac{1}{2} \times \frac{9}{10}t^2$
 $t^2 = 400$
 $t = 20$

The descent took 20 seconds.

Solution Bank

Pearson

22 a l passes through $\mathbf{i} - \mathbf{j} + 3\mathbf{k}$ and $\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$

$$\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \\ -1 \end{pmatrix}$$

Therefore an equation for l is:

$$\mathbf{r} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 3 \\ -1 \end{pmatrix}$$

$$\mathbf{r} = \mathbf{i} - \mathbf{j} + 3\mathbf{k} + \lambda(3\mathbf{j} - \mathbf{k})$$

b When AC = 2CB, $\lambda = \frac{2}{3}$

$$\begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} + \frac{2}{3} \begin{pmatrix} 0 \\ 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 7/3 \end{pmatrix}$$

$$\mathbf{i} + \mathbf{j} + \frac{7}{3}\mathbf{k}$$

Or *B* is the midpoint of *AC*

$$\overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{AB}$$

$$= \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} + \begin{pmatrix} 0 \\ 3 \\ -1 \end{pmatrix}$$

$$=\begin{pmatrix}1\\5\\1\end{pmatrix}$$

$$\mathbf{23} \ \mathbf{r} = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}$$

$$\mathbf{r} = 2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k} + \lambda(2\mathbf{j} + 3\mathbf{k})$$

24 When $\lambda = 2$

$$\mathbf{r} = \mathbf{i} + 2\mathbf{j} - \mathbf{k} + 2(3\mathbf{i} + \mathbf{j} - 2\mathbf{k})$$

$$\mathbf{r} = 7\mathbf{i} + 4\mathbf{j} - 5\mathbf{k}$$

and

$$9\mathbf{i} + 3\mathbf{j} - 6\mathbf{k} = 3(3\mathbf{i} + \mathbf{j} - 2\mathbf{k})$$

So parallel

25 a L has position vector
$$\begin{pmatrix} 4 \\ 7 \\ 7 \end{pmatrix}$$
, M has position

vector
$$\begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$$
 and N has position vector $\begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}$

$$\overrightarrow{ML} = \overrightarrow{OL} - \overrightarrow{OM}$$

$$= \begin{pmatrix} 4 \\ 7 \\ 7 \end{pmatrix} - \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$$

$$= \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix}$$

$$\overrightarrow{MN} = \overrightarrow{ON} - \overrightarrow{OM}$$

$$= \begin{pmatrix} 2\\4\\6 \end{pmatrix} - \begin{pmatrix} 1\\3\\2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}$$

b Let $\angle LMN$ be θ

$$\cos \theta = \frac{\overrightarrow{ML} \cdot \overrightarrow{MN}}{\left| \overrightarrow{ML} \right| \left| \overrightarrow{MN} \right|}$$

$$\overrightarrow{ML} \cdot \overrightarrow{MN} = \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}$$
$$= 3(1) + 4(1) + 5(4)$$

$$= 27$$

$$|\overrightarrow{M}| \qquad \sqrt{2^2 + 4^2 + 5^2}$$

$$\left| \overline{ML} \right| = \sqrt{3^2 + 4^2 + 5^2}$$

$$=\sqrt{50}$$

$$= \sqrt{50}$$

$$\left| \overline{MN} \right| = \sqrt{1^2 + 1^2 + 4^2}$$

Therefore:

$$\cos\theta = \frac{27}{\sqrt{50}\sqrt{18}}$$

$$=\frac{27}{\sqrt{900}}$$

$$=\frac{27}{30}$$
 as required

26 a A has position vector $\begin{bmatrix} -2 \\ 1 \end{bmatrix}$,

B has position vector
$$\begin{pmatrix} 6\\2\\6 \end{pmatrix}$$

and C has position vector
$$\begin{pmatrix} 3 \\ p \\ q \end{pmatrix}$$

l passes through *A* and *B*, therefore:

$$\begin{pmatrix} 9 \\ -2 \\ 1 \end{pmatrix} - \begin{pmatrix} 6 \\ 2 \\ 6 \end{pmatrix} = \begin{pmatrix} 3 \\ -4 \\ -5 \end{pmatrix}$$

So a vector equation for l is:

$$\mathbf{r} = \begin{pmatrix} 9 \\ -2 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ -4 \\ -5 \end{pmatrix}$$

b C lies on l, therefore:

$$\begin{pmatrix} 9 \\ -2 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ -4 \\ -5 \end{pmatrix} = \begin{pmatrix} 3 \\ p \\ q \end{pmatrix}$$

$$9 + 3\lambda = 3$$

$$\Rightarrow \lambda = -2$$

$$-2-4\lambda=p$$

Substituting $\lambda = -2$ gives:

$$p = -2 - 4(-2)$$

$$1-5\lambda = q$$

Substituting $\lambda = -2$ gives:

$$q = 1 - 5(-2)$$

$$=11$$

So
$$p = 6$$
 and $q = 11$

26 c
$$\overrightarrow{OC} = \begin{pmatrix} 3 \\ 6 \\ 11 \end{pmatrix}$$
 and $\overrightarrow{AB} = \begin{pmatrix} -3 \\ 4 \\ 5 \end{pmatrix}$

$$\cos \theta = \frac{\overrightarrow{OC} \cdot \overrightarrow{AB}}{|\overrightarrow{OC}| |\overrightarrow{AB}|}$$

$$= \begin{pmatrix} 3 \\ 6 \\ 11 \end{pmatrix} \cdot \begin{pmatrix} -3 \\ 4 \\ 5 \end{pmatrix}$$

$$= 3(-3) + 6(4) + 11(5)$$

$$\overrightarrow{OC} \cdot \overrightarrow{AB}$$

$$\left| \overrightarrow{OC} \right| = \sqrt{3^2 + 6^2 + 11^2}$$

$$= \sqrt{166}$$

$$\left| \overrightarrow{AB} \right| = \sqrt{(-3)^2 + 4^2 + 5^2}$$

$$= \sqrt{50}$$

$$\cos\theta = \frac{70}{\sqrt{166}\sqrt{50}}$$

$$\theta = 39.794...$$

$$=39.8^{\circ}$$
 (1 d.p.)

d Let D be the point (x, y, z)

$$\overrightarrow{AB}$$
 has equation $\mathbf{r} = \begin{pmatrix} 9 \\ -2 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ -4 \\ -5 \end{pmatrix}$

 \overrightarrow{OD} is perpendicular to \overrightarrow{AB} , therefore:

$$\begin{pmatrix} 3 \\ -4 \\ -5 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0$$

$$3x - 4y - 5z = 0$$
 (1)

Since D lies on AB:

$$\begin{pmatrix} 9 \\ -2 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ -4 \\ -5 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\begin{pmatrix} 9+3\lambda \\ -2-4\lambda \\ 1-5\lambda \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$x = 9 + 3\lambda$$

$$y = -2 - 4\lambda$$

$$z = 1 - 5\lambda$$

Solution Bank

? Pearson

Substituting into (1) gives:

$$3(9+3\lambda)-4(-2-4\lambda)-5(1-5\lambda)=0$$

$$27 + 9\lambda + 8 + 16\lambda - 5 + 25\lambda = 0$$

$$50\lambda = -30$$

$$\lambda = \frac{3}{5}$$

Therefore:

$$x = 9 + 3\left(\frac{3}{5}\right) = \frac{36}{5}$$

$$y = -2 - 4\left(\frac{3}{5}\right) = \frac{2}{5}$$

$$z = 1 - 5\left(\frac{3}{5}\right) = 4$$

Hence *D* has coordinates $\left(\frac{36}{5}, \frac{2}{5}, 4\right)$ and

position vector $\frac{36}{5}\mathbf{i} + \frac{2}{5}\mathbf{j} + 4\mathbf{k}$

27 a A has position vector $\begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$ and B has

position vector
$$\begin{pmatrix} 5\\0\\-3 \end{pmatrix}$$

 l_1 passes through A and B

$$\begin{pmatrix} 5 \\ 0 \\ -3 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \\ 0 \end{pmatrix}$$

So an equation for l_1 is:

$$\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ -2 \\ 0 \end{pmatrix}$$

b l_2 has the equation $\mathbf{r} = \begin{pmatrix} 4 \\ -4 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$

A is the point (1, 2, -3)

If A lies on l_2 then:

$$\begin{pmatrix} 4 \\ -4 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$$

$$4 + \mu = 1 \Rightarrow \mu = -3$$

$$-4-2\mu=2 \Rightarrow \mu=-3$$

$$3 + 2\mu = -3 \Rightarrow \mu = -3$$

Therefore A lies on l_2

27 c $\begin{pmatrix} 4 \\ -2 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = 4(1) - 2(-2) + 0(2) = 8$

$$\cos \theta = \frac{l_1 \cdot l_2}{|l_1| |l_2|}$$
$$|l_1| = \sqrt{4^2 + (-2)^2}$$

$$= \sqrt{20}$$

$$|l_2| = \sqrt{1^2 + (-2)^2 + 2^2}$$

$$=\sqrt{}$$

$$\cos\theta = \frac{8}{3\sqrt{20}}$$

$$\theta = 53.395...$$

$$=53.4^{\circ}$$
 (1 d.p.)

d C has position vector $\begin{pmatrix} 0 \\ 4 \\ -5 \end{pmatrix}$

$$l_1$$
 has equation $\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ -2 \\ 0 \end{pmatrix}$

Let the closest point be D(x, y, z).

$$\overrightarrow{CD} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} - \begin{pmatrix} 0 \\ 4 \\ -5 \end{pmatrix} = \begin{pmatrix} x \\ y - 4 \\ z + 5 \end{pmatrix}$$

 \overrightarrow{CD} is perpendicular to l_1 , therefore:

$$\begin{pmatrix} 4 \\ -2 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} x \\ y-4 \\ z+5 \end{pmatrix} = 0$$

$$4x-2(y-4)=0$$

$$4x - 2y = -8$$
 (1)

D lies on l_1 therefore:

$$\begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ -2 \\ 0 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1+4\lambda \\ 2-2\lambda \\ -3 \end{pmatrix}$$

Substituting $x = 1 + 4\lambda$ and $y = 2 - 2\lambda$ into (1) gives:

(1) gives.

$$4(1+4\lambda)-2(2-2\lambda) = -8$$

$$4+16\lambda-4+4\lambda = -8$$

$$20\lambda = -8$$

$$\lambda = -\frac{2}{5}$$

When
$$\lambda = -\frac{2}{5}$$

 $x = 1 + 4\left(-\frac{2}{5}\right) = -\frac{3}{5}$
 $y = 2 - 2\left(-\frac{2}{5}\right) = \frac{14}{5}$

The distance, d, between (0, 4, -5) and $\left(-\frac{3}{5}, \frac{14}{5}, -3\right)$ is found using:

$$d = \sqrt{\left(0 - \frac{3}{5}\right)^2 + \left(4 - \frac{14}{5}\right)^2 + \left(-5 - (-3)\right)^2}$$

$$= \sqrt{\left(-\frac{3}{5}\right)^2 + \left(\frac{6}{5}\right)^2 + \left(-2\right)^2}$$

$$= \sqrt{\frac{29}{5}}$$

$$= \frac{\sqrt{145}}{5}$$

Alternatively, you can use trigonometry as the shortest distance from C to the line l_1 forms a right-angled triangle, so

$$d = |\overrightarrow{CA}| \times \sin \theta$$

$$|\overrightarrow{CA}| = \sqrt{(1-0)^2 + (2-4)^2 + (-3-5)^2}$$

$$= 3$$
Using part **c**

 $\cos^2 \theta + \sin^2 \theta = 1$

$$\cos^2 \theta + \sin^2 \theta = 1$$

$$\left(\frac{8}{3\sqrt{20}}\right)^2 + \sin^2 \theta = 1$$

$$\sin \theta = \sqrt{1 - \frac{16}{45}}$$

$$= \frac{\sqrt{145}}{15}$$

$$d = 3 \times \frac{\sqrt{145}}{15}$$

$$\sqrt{145}$$

28 a
$$l_1$$
 has equation $\mathbf{r} = \begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$ and l_2

has equation
$$\mathbf{r} = \begin{pmatrix} 9 \\ 1 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} 4 \\ 1 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 1 \\ -1 \end{pmatrix} = 1(4) - 2(1) + 2(-1)$$

Therefore the submarines are moving perpendicularly to each other.

b At *A*:

$$\begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} 9 \\ 1 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} 4 \\ 1 \\ -1 \end{pmatrix}$$

$$3 + \lambda = 9 + 4\mu \Rightarrow \lambda - 4\mu = 6 \qquad \textbf{(1)}$$

$$4-2\lambda=1+\mu \Rightarrow 2\lambda+\mu=3$$
 (2)

$$-5+2\lambda=-2-\mu \Rightarrow 2\lambda+\mu=3$$
 (3)

Adding $4 \times (2)$ and (1) gives:

$$8\lambda + 4\mu + \lambda - 4\mu = 12 + 6$$

$$9\lambda = 18$$

$$\lambda = 2$$

Substituting
$$\lambda = 2$$
 into $\begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$

gives:

$$\begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix} + 2 \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ -1 \end{pmatrix}$$

So a position vector for A is $5\mathbf{i} - \mathbf{k}$

Solution Bank

28 c *B* has position vector $10\mathbf{j} - 11\mathbf{k}$ If l_1 passes through *B* then:

$$\begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 10 \\ -11 \end{pmatrix}$$

$$3 + \lambda = 0 \Rightarrow \lambda = -3$$

$$4 - 2\lambda = 10 \Rightarrow \lambda = -3$$

$$-5 + 2\lambda = -11 \Rightarrow \lambda = -3$$

Therefore l_1 passes through B

If l_2 passes through B then:

$$\begin{pmatrix} 9 \\ 1 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} 4 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 10 \\ -11 \end{pmatrix}$$

$$9 + 4\mu = 0 \Rightarrow \mu = -\frac{9}{4}$$

$$1 + \mu = 10 \Rightarrow \mu = 9$$

Therefore l_2 does not pass through B

d A is the point (5, 0, -1) and B is the point

(0, 10, -11)Let d be the distance between A and B

$$|d| = \sqrt{(5-0)^2 + (0-10)^2 + (-1-(-11))^2}$$
$$= \sqrt{5^2 + (-10)^2 + 10^2}$$

$$= \sqrt{225}$$
$$= 15$$

Since 1 unit = 100 m

AB has length 1500 m = 1.5 km

29 a l_1 has equation $\mathbf{r} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$ and l_2

has equation
$$\mathbf{r} = \begin{pmatrix} 1 \\ 4 \\ -4 \end{pmatrix} + \mu \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix}$$

If the lines intersect then:

$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ -4 \end{pmatrix} + \mu \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix}$$

$$1 + 2\lambda = 1 - 3\mu \Rightarrow 2\lambda + 3\mu = 0 \quad \textbf{(1)}$$

$$1 + \lambda = 4 \Rightarrow \lambda = 3$$

$$-2\lambda = -4 + \mu \Rightarrow 2\lambda + \mu = 4$$
 (2)

Substituting $\lambda = 3$ into (1) gives:

$$2(3) + 3\mu = 0$$

$$\mu = -2$$

Substituting $\lambda = 3$ and $\mu = -2$ into (2)

gives:

LHS =
$$2(3) + (-2)$$

$$=RHS$$

Therefore the lines intersect.

b Substituting into $\lambda = 3$ into $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$

gives:

$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + 3 \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 7 \\ 4 \\ -6 \end{pmatrix}$$

Therefore the position vector of the point of intersection is $7\mathbf{i} + 4\mathbf{j} - 6\mathbf{k}$

Solution Bank

$$\mathbf{29 c} \quad \cos \theta = \frac{l_1 \cdot l_2}{|l_1| |l_2|}$$

$$l_{1} \cdot l_{2} = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} \cdot \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix}$$

$$= 2(-3) + 1(0) - 2(1)$$

$$= -8$$

$$|l_{1}| = \sqrt{2^{2} + 1^{2} + (-2)^{2}}$$

$$= \sqrt{9}$$

$$= 3$$

$$|l_{2}| = \sqrt{(-3)^{2} + 1^{2}}$$

$$= \sqrt{10}$$

$$\cos \theta = -\frac{8}{3\sqrt{10}}$$

Therefore for the acute angle between l_1 and l_2 :

$$\cos\theta = \frac{4\sqrt{10}}{15}$$

and
$$l_2$$
.

$$\cos \theta = \frac{4\sqrt{10}}{15}$$
30 a l_1 has equation $\mathbf{r} = \begin{pmatrix} 6 \\ 8 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$

A is the point (3, a, 2) and B is the point (8, 6, b) and A and B lie on l_1 If A lies on l_1 then:

$$\begin{pmatrix} 6 \\ 8 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ a \\ 2 \end{pmatrix}$$

$$6 + \lambda = 3 \Rightarrow \lambda = -3$$

$$8 - \lambda = a \Rightarrow 8 - (-3) = a \Rightarrow a = 11$$

If B lies on l_1 then:

$$\begin{pmatrix} 6 \\ 8 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 8 \\ 6 \\ b \end{pmatrix}$$

$$6 + \lambda = 8 \Rightarrow \lambda = 2$$

$$5 + \lambda = b \Rightarrow b = 5 + 2 \Rightarrow b = 7$$

So
$$a = 11$$
 and $b = 7$

30 b Let P be the point (x, y, z)

$$l_1$$
 has equation $\mathbf{r} = \begin{pmatrix} 6 \\ 8 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$

 \overrightarrow{OP} is perpendicular to l_1 , therefore:

$$\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0$$

$$x - y + z = 0 \qquad (1)$$

Since P lies on l_1 :

$$\begin{pmatrix} 6 \\ 8 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$x = 6 + \lambda$$

$$y = 8 - \lambda$$

$$z = 5 + \lambda$$

Substituting for x, y and z in (1) gives:

$$(6+\lambda)-(8-\lambda)+(5+\lambda)=0$$

$$3\lambda = -3$$

$$\lambda = -1$$

When
$$\lambda = -1$$

$$x = 6 + (-1) = 5$$

$$y = 8 - (-1) = 9$$

$$z = 5 + (-1) = 4$$

So P has coordinates (5, 9, 4)

$$\mathbf{c} \quad \left| \overrightarrow{OP} \right| = \sqrt{5^2 + 9^2 + 4^2}$$
$$= \sqrt{122}$$

31 a A has position vector $\begin{pmatrix} 6 \\ 3 \\ 4 \end{pmatrix}$ and B has

position vector
$$\begin{pmatrix} 5\\2\\6 \end{pmatrix}$$

$$\overrightarrow{AB} = \begin{pmatrix} 5 \\ 2 \\ 6 \end{pmatrix} - \begin{pmatrix} 6 \\ 3 \\ 4 \end{pmatrix}$$
$$= \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix}$$

Solution Bank

31 b
$$\mathbf{r} = \begin{pmatrix} 6 \\ 3 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix}$$

c C has position vector
$$\begin{pmatrix} 4\\10\\2 \end{pmatrix}$$

Let P be the point (x, y, z)

$$\overrightarrow{CP} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} - \begin{pmatrix} 4 \\ 10 \\ 2 \end{pmatrix} = \begin{pmatrix} x - 4 \\ y - 10 \\ z - 2 \end{pmatrix}$$

 \overrightarrow{CP} is perpendicular to l, therefore:

$$\begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} x-4 \\ y-10 \\ z-2 \end{pmatrix} = 0$$
$$-(x-4)-(y-10)+2(z-2)=0$$
$$x+y-2z=10 \quad (1)$$

Since P lies on l_1 :

$$\begin{pmatrix} 6 \\ 3 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
$$x = 6 - \lambda$$
$$y = 3 - \lambda$$

$$y = 3 - \lambda$$
$$z = 4 + 2\lambda$$

Substituting for x, y and z in (1) gives:

$$(6-\lambda)+(3-\lambda)-2(4+2\lambda)=10$$

$$6\lambda = -9$$

$$\lambda = -\frac{3}{2}$$

When
$$\lambda = -\frac{3}{2}$$

$$x = 6 - \left(-\frac{3}{2}\right) = \frac{15}{2}$$

$$y = 3 - \left(-\frac{3}{2}\right) = \frac{9}{2}$$

$$z = 4 + 2\left(-\frac{3}{2}\right) = 1$$

So P has coordinates (7.5, 4.5, 1)

32 a
$$l_1$$
 has equation $\mathbf{r} = \begin{pmatrix} 3 \\ -2 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$ and l_2

has equation
$$\mathbf{r} = \begin{pmatrix} 1 \\ 12 \\ 8 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}$$

If l_1 and l_2 meet then:

$$\begin{pmatrix} 3 \\ -2 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 12 \\ 8 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}$$
$$3 + 2\lambda = 1 + \mu \Rightarrow 2\lambda - \mu = -2$$
 (1)

$$-2 + \lambda = 12 - 2\mu \Rightarrow \lambda + 2\mu = 14$$
 (2)

$$4 - \lambda = 8 - \mu \Rightarrow -\lambda + \mu = 4 \tag{3}$$

Adding (2) and (3) gives:

$$\lambda + 2\mu - \lambda + \mu = 14 + 4$$

$$3\mu = 18$$

$$\mu = 6$$

Substituting $\mu = 6$ into (3) gives:

$$-\lambda + (6) = 4$$

$$\lambda = 2$$

Check by substituting $\mu = 6$ and $\lambda = 2$ into (1):

LHS =
$$2(2)-(6)$$

= -2

$$=RHS$$

Therefore l_1 and l_2 intersect.

Substituting
$$\lambda = 2$$
 into $\begin{pmatrix} 3 \\ -2 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$

gives:

$$\begin{pmatrix} 3 \\ -2 \\ 4 \end{pmatrix} + 2 \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 7 \\ 0 \\ 2 \end{pmatrix}$$

Therefore A has coordinates (7, 0, 2)

Solution Bank

$$\mathbf{32 b} \quad \cos \theta = \frac{l_1 \cdot l_2}{|l_1| |l_2|}$$

$$|l_1||l_2|$$

$$l_1 \cdot l_2 = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}$$

$$= 2(1) + 1(-2) - 1(-1)$$

$$= 1$$

$$|l_1| = \sqrt{2^2 + 1^2 + (-1)^2}$$

$$= \sqrt{6}$$

$$|l_2| = \sqrt{1^2 + (-2)^2 + (-1)^2}$$

$$= \sqrt{6}$$

$$\cos \theta = \frac{1}{\sqrt{6}\sqrt{6}}$$

$$= \frac{1}{6}$$

= 80.4° (1 d.p.)
c B has position vector
$$\begin{pmatrix} 5 \\ -1 \\ 3 \end{pmatrix}$$

 $\theta = 80.405...$

$$l_1$$
 has equation $\mathbf{r} = \begin{pmatrix} 3 \\ -2 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$

If B lies on l_1 then:

$$\begin{pmatrix} 3 \\ -2 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 5 \\ -1 \\ 3 \end{pmatrix}$$
$$3 + 2\lambda = 5 \Rightarrow \lambda = 1$$
$$-2 + \lambda = -1 \Rightarrow \lambda = 1$$
$$4 - \lambda = 3 \Rightarrow \lambda = 1$$

Therefore B lies on l_1 .

32 d *B* has position vector
$$\begin{pmatrix} 5 \\ -1 \\ 3 \end{pmatrix}$$

Using trigonometry, shortest distance from B line l_2 is

$$d = |\overrightarrow{BA}| \times \sin \theta$$

$$|\overrightarrow{BA}| = \sqrt{(7-5)^2 + (0-1)^2 + (2-3)^2}$$

$$= \sqrt{6}$$

$$\sin^2\theta + \cos^2\theta = 1$$

$$\sin^2 \theta + \left(\frac{1}{6}\right)^2 = 1$$

$$\sin \theta = \sqrt{1 - \left(\frac{1}{6}\right)^2}$$

$$= \frac{\sqrt{35}}{6}$$

So shortest distance is

$$d = \sqrt{6} \times \frac{\sqrt{35}}{6}$$

= 2.42 (3 s.f.)

Alternatively:

Let the closest point on l_2 be P(x, y, z)

$$\overrightarrow{BP} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} - \begin{pmatrix} 5 \\ -1 \\ 3 \end{pmatrix} = \begin{pmatrix} x-5 \\ y+1 \\ z-3 \end{pmatrix}$$

 \overrightarrow{BP} is perpendicular to l_2 , therefore:

$$\begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} x-5 \\ y+1 \\ z-3 \end{pmatrix} = 0$$
$$(x-5)-2(y+1)-(z-3)=0$$

Since *P* lies on l_2 :

$$\begin{pmatrix} 1 \\ 12 \\ 8 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$x = 1 + \mu$$

$$y = 12 - 2\mu$$

$$z = 8 - \mu$$

Substituting for x, y and z in (1) gives:

$$(1+\mu)-2(12-2\mu)-(8-\mu)=4$$

$$-31 + 6\mu = 4$$

$$\mu = \frac{35}{6}$$

Solution Bank

When $\mu = \frac{35}{6}$

$$x = 1 + \left(\frac{35}{6}\right) = \frac{41}{6}$$

$$y = 12 - 2\left(\frac{35}{6}\right) = \frac{1}{3}$$

$$z = 8 - \left(\frac{35}{6}\right) = \frac{13}{6}$$

So P has coordinates $\left(\frac{41}{6}, \frac{1}{3}, \frac{13}{6}\right)$

B has position coordinates (5, -1, 3)

$$|\overrightarrow{BP}| = \sqrt{\left(\frac{41}{6} - 5\right)^2 + \left(\frac{1}{3} - (-1)\right)^2 + \left(\frac{13}{6} - 3\right)^2}$$

$$= \sqrt{\left(\frac{11}{6}\right)^2 + \left(\frac{4}{3}\right)^2 + \left(-\frac{5}{6}\right)^2}$$

$$= \sqrt{\frac{35}{6}}$$

$$= 2.415...$$

$$= 2.42 \quad (3 \text{ s.f.})$$

33 a A starts at $\begin{pmatrix} 120 \\ -80 \\ 13 \end{pmatrix}$ and travels to $\begin{pmatrix} 200 \\ 20 \\ 5 \end{pmatrix}$ B starts at $\begin{pmatrix} -20 \\ 35 \\ 5 \end{pmatrix}$ and travels in the

direction
$$\begin{pmatrix} 10 \\ -2 \\ 0.1 \end{pmatrix}$$

For A:

$$\begin{pmatrix} 120 \\ -80 \\ 13 \end{pmatrix} - \begin{pmatrix} 200 \\ 20 \\ 5 \end{pmatrix} = \begin{pmatrix} -80 \\ -100 \\ 8 \end{pmatrix}$$

Therefore an equation for A is:

$$\mathbf{r} = \begin{pmatrix} 120 \\ -80 \\ 13 \end{pmatrix} + \lambda \begin{pmatrix} -80 \\ -100 \\ 8 \end{pmatrix}$$

An equation for *B* is:

$$\mathbf{r} = \begin{pmatrix} -20 \\ 35 \\ 5 \end{pmatrix} + \mu \begin{pmatrix} 10 \\ -2 \\ 0.1 \end{pmatrix}$$

If the paths of the aeroplanes intersect

$$\begin{pmatrix} 120 \\ -80 \\ 13 \end{pmatrix} + \lambda \begin{pmatrix} -80 \\ -100 \\ 8 \end{pmatrix} = \begin{pmatrix} -20 \\ 35 \\ 5 \end{pmatrix} + \mu \begin{pmatrix} 10 \\ -2 \\ 0.1 \end{pmatrix}$$

$$120 - 80\lambda = -20 + 10\mu$$

$$\Rightarrow 80\lambda + 10\mu = 140$$
 (1)

$$-80-100\lambda = 35-2\mu$$

$$\Rightarrow 100\lambda - 2\mu = -115 \qquad \textbf{(2)}$$

$$13 + 8\lambda = 5 + 0.1\mu$$

$$\Rightarrow 8\lambda - 0.1\mu = -8 \tag{3}$$

Adding $5 \times (2)$ and (1) gives: $500\lambda - 10\mu + 80\lambda + 10\mu = -575 + 140$

$$580\lambda = -435$$

$$\lambda = -\frac{3}{4}$$

Substituting $\lambda = -\frac{3}{4}$ into (1) gives:

$$80\left(-\frac{3}{4}\right) + 10\mu = 140$$

$$10\mu = 200$$

$$\mu = 20$$

Substituting $\lambda = -\frac{3}{4}$ and $\mu = 20$ into (1)

gives:

LHS =
$$80\left(-\frac{3}{4}\right) + 10(20)$$

= $-60 + 200$
= 140
= RHS

Therefore the paths of the aeroplanes intersect.

Substituting
$$\mu = 20$$
 into $\begin{pmatrix} -20 \\ 35 \\ 5 \end{pmatrix} + \mu \begin{pmatrix} 10 \\ -2 \\ 0.1 \end{pmatrix}$

gives:

$$\begin{pmatrix} -20\\35\\5 \end{pmatrix} + 20 \begin{pmatrix} 10\\-2\\0.1 \end{pmatrix} = \begin{pmatrix} 180\\-5\\7 \end{pmatrix}$$

So the paths intersect at the point (180, -5, 7).

b The aeroplanes don't necessarily pass through (180, -5, 7) at the same time.