Pure Mathematics 4

Solution Bank

Exercise 7E

1
$$\overrightarrow{XY} = \overrightarrow{XW} + \overrightarrow{WY} = \mathbf{b} - \mathbf{a}$$

 $\overrightarrow{YZ} = \overrightarrow{YW} + \overrightarrow{WZ} = \mathbf{c} - \mathbf{b}$
Since $\overrightarrow{XY} = \overrightarrow{YZ}$:
 $\mathbf{b} - \mathbf{a} = \mathbf{c} - \mathbf{b}$
 $\mathbf{b} + \mathbf{b} = \mathbf{a} + \mathbf{c}$
 $\mathbf{a} + \mathbf{c} = 2\mathbf{b}$

2 a i
$$\overrightarrow{OB} = 2\overrightarrow{OR}$$

= 2r

ii
$$\overrightarrow{PQ} = \overrightarrow{PO} + \overrightarrow{OQ}$$
 (addition of vectors)

$$= -\overrightarrow{OP} + \overrightarrow{OQ}$$

$$\overrightarrow{OQ} = \overrightarrow{OA} + \overrightarrow{AQ}$$
 (addition of vectors)
$$\overrightarrow{AQ} = \frac{1}{2} \overrightarrow{AB}$$

$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB}$$
 (addition of vectors)
$$= -\overrightarrow{OA} + \overrightarrow{OB}$$

$$= -2\mathbf{p} + 2\mathbf{r}$$

$$\therefore \overrightarrow{AQ} = \frac{1}{2} (-2\mathbf{p} + 2\mathbf{r})$$

$$= -\mathbf{p} + \mathbf{r}$$

$$\therefore \overrightarrow{OQ} = 2\mathbf{p} + (-\mathbf{p} + \mathbf{r})$$

$$= \mathbf{p} + \mathbf{r}$$

$$\therefore \overrightarrow{PQ} = -\mathbf{p} + (\mathbf{p} + \mathbf{r})$$

b
$$\overrightarrow{OB} = 2\mathbf{r}$$
 and $\overrightarrow{PQ} = \mathbf{r}$
 $\Rightarrow \overrightarrow{OB}$ and \overrightarrow{PQ} are parallel.
 $\Rightarrow \angle AOB = \angle APQ$ and $\angle ABO = \angle AQP$
(corresponding angles, parallel lines)
Angle A is common to both triangles.
 $\Rightarrow \Delta PAQ$ and ΔOAB are similar (three equal angles)

3 **a**
$$M$$
 divides OA in the ratio 2:1.

$$\Rightarrow \overrightarrow{OM} = \frac{2}{3} \mathbf{a}$$
Using vector addition:

$$\overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AN}$$

$$\overrightarrow{AN} = \lambda \overrightarrow{AB} \left(N \text{ lies on } AB, \text{ so } \overrightarrow{AN} = \lambda \overrightarrow{AB} \right)$$

$$\overrightarrow{AB} = \mathbf{b} - \mathbf{a}$$

$$\overrightarrow{ON} = \mathbf{a} + \lambda (\mathbf{b} - \mathbf{a})$$

3 **b**
$$\overrightarrow{ON} = \overrightarrow{OM} + \overrightarrow{MN}$$

 $= \overrightarrow{OM} + \mu \overrightarrow{OB} \ (\overrightarrow{MN} \text{ is parallel to } \overrightarrow{OB})$
 $= \frac{2}{3} \mathbf{a} + \mu \mathbf{b}$
But $\overrightarrow{ON} = \mathbf{a} + \lambda (\mathbf{b} - \mathbf{a})$
So:
 $\mathbf{a} + \lambda (\mathbf{b} - \mathbf{a}) = \frac{2}{3} \mathbf{a} + \mu \mathbf{b}$
 $\mathbf{a}(1 - \lambda) + \lambda \mathbf{b} = \frac{2}{3} \mathbf{a} + \mu \mathbf{b}$
 $\Rightarrow \text{(comparing coefficients of } \mathbf{a} \text{ and } \mathbf{b}\text{):}$
 $1 - \lambda = \frac{2}{3} \text{ and } \lambda = \mu$
so $\lambda = \mu = \frac{1}{3} \text{ and } \overrightarrow{ON} = \frac{2}{3} \mathbf{a} + \frac{1}{3} \mathbf{b}$
 $\overrightarrow{AN} = \frac{1}{3} (\mathbf{b} - \mathbf{a})$
 $\Rightarrow \overrightarrow{NB} = \frac{2}{3} (\mathbf{b} - \mathbf{a})$
 $\Rightarrow AN : NB = 1 : 2$

4 **a** M is the midpoint of OA, so: $\overrightarrow{OM} = \frac{1}{2}\overrightarrow{OA}$

$$=\frac{1}{2}\mathbf{a}$$

Using vector addition:

$$\overrightarrow{MQ} = \overrightarrow{MA} + \overrightarrow{AB} + \overrightarrow{BQ}$$

$$= \overrightarrow{MA} + \overrightarrow{AB} + \frac{1}{4}\overrightarrow{BC}$$

$$= \frac{1}{2}\mathbf{a} + \mathbf{c} - \frac{1}{4}\mathbf{a}$$

$$= \frac{1}{4}\mathbf{a} + \mathbf{c}$$

and:

$$\overrightarrow{AC} = \overrightarrow{AO} + \overrightarrow{OC}$$
$$= -\mathbf{a} + \mathbf{c}$$
$$= \mathbf{c} - \mathbf{a}$$

P lies on AC and MQ, so:

$$\overrightarrow{OP} = \overrightarrow{OM} + \lambda \overrightarrow{MQ}$$

$$= \frac{1}{2} \mathbf{a} + \lambda \left(\frac{1}{4} \mathbf{a} + \mathbf{c} \right)$$
and $\overrightarrow{OP} = \overrightarrow{OA} + \mu \overrightarrow{AC}$

$$= \mathbf{a} + \mu (\mathbf{c} - \mathbf{a})$$

Comparing coefficients of a and c:

$$\frac{1}{2} + \frac{1}{4}\lambda = 1 - \mu \text{ and } \lambda = \mu$$

$$\Rightarrow \frac{5}{4}\lambda = \frac{1}{2}$$

$$\lambda = \mu = \frac{2}{5}$$

$$\overrightarrow{OP} = \frac{3}{5}\mathbf{a} + \frac{2}{5}\mathbf{c}$$

Pure Mathematics 4

Solution Bank

4 **b**
$$\overrightarrow{AP} = \overrightarrow{AO} + \overrightarrow{OP}$$

 $= -\mathbf{a} + 0.6\mathbf{a} + 0.4\mathbf{c}$
 $= 0.4(\mathbf{c} - \mathbf{a})$
 $\overrightarrow{PC} = \overrightarrow{PO} + \overrightarrow{OC}$
 $= -0.6\mathbf{c} - 0.4\mathbf{c} + \mathbf{c}$

=0.6(c-a)

Therefore \overrightarrow{AP} : $\overrightarrow{PC} = 2:3$ as required.

5 a
$$\overrightarrow{AB} = -\overrightarrow{OA} + \overrightarrow{OB}$$

$$= -\binom{5}{8} + \binom{4}{3}$$

$$= \binom{-1}{-5}$$

$$|\overrightarrow{AB}| = \sqrt{(-1)^2 + (-5)^2}$$

$$= \sqrt{26}$$

b
$$\overrightarrow{AC} = -\overrightarrow{OA} + \overrightarrow{OC}$$

$$= -\binom{5}{8} + \binom{7}{6}$$

$$= \binom{2}{-2}$$

$$|\overrightarrow{AC}| = \sqrt{2^2 + (-2)^2}$$

$$= \sqrt{8}$$

$$= 2\sqrt{2}$$

$$\overrightarrow{BC} = -\overrightarrow{OB} + \overrightarrow{OC}$$

$$= -\binom{4}{3} + \binom{7}{6}$$

$$= \binom{3}{3}$$

$$|\overrightarrow{BC}| = \sqrt{3^2 + 3^2}$$

$$= \sqrt{18}$$

$$= 2\sqrt{2}$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

$$\cos A = \frac{(2\sqrt{2})^2 + (\sqrt{26})^2 - (3\sqrt{2})^2}{2(2\sqrt{2})(\sqrt{26})}$$

$$\cos A = \frac{8 + 26 - 18}{4\sqrt{52}}$$

$$\cos A = \frac{16}{8\sqrt{13}}$$

$$\cos A = \frac{2}{\sqrt{13}}$$

$$A = 56.3...^{\circ}$$

Using the sine rule:

$$\frac{\sin B}{b} = \frac{\sin A}{a}$$

$$\frac{\sin B}{2\sqrt{2}} = \frac{\sin 56.3^{\circ}}{3\sqrt{2}}$$

$$\sin B = \frac{2\sqrt{2} \sin 56.3^{\circ}}{3\sqrt{2}}$$

$$B = 33.68...^{\circ}$$

$$C = 180^{\circ} - 56^{\circ} - 34^{\circ} = 90^{\circ}$$
The angles are 56°, 34° and 90°.

6 a
$$\overrightarrow{OS} = \overrightarrow{OP} + \overrightarrow{PR} + \overrightarrow{RS}$$

 $\overrightarrow{OP} = \mathbf{a}$
 $\overrightarrow{PR} = \frac{1}{3}(-\mathbf{a} + \mathbf{b})$
 $\overrightarrow{RS} = 2\overrightarrow{OR} = 2(\overrightarrow{OP} + \overrightarrow{PR})$
 $= 2(\mathbf{a} + \frac{1}{3}(-\mathbf{a} + \mathbf{b}))$
 $= 2\mathbf{a} - \frac{2}{3}\mathbf{a} + \frac{2}{3}\mathbf{b}$
 $= \frac{4}{3}\mathbf{a} + \frac{2}{3}\mathbf{b}$
So $\overrightarrow{OS} = \mathbf{a} + \frac{1}{3}(-\mathbf{a} + \mathbf{b}) + \frac{4}{3}\mathbf{a} + \frac{2}{3}\mathbf{b}$
 $= 2\mathbf{a} + \mathbf{b}$

b
$$\overrightarrow{TP} = \overrightarrow{TO} + \overrightarrow{OP}$$

 $= \mathbf{b} + \mathbf{a} = \mathbf{a} + \mathbf{b}$
 $\overrightarrow{PS} = \overrightarrow{PR} + \overrightarrow{RS}$
 $= \frac{1}{3} (-\mathbf{a} + \mathbf{b}) + \frac{4}{3} \mathbf{a} + \frac{2}{3} \mathbf{b} = \mathbf{a} + \mathbf{b}$

 \overrightarrow{TP} is parallel and equal to \overrightarrow{PS} and point P is common to both lines, so T, P and S lie on a straight line.

Pure Mathematics 4 Solution Bank

Challenge

- a Since X lies on PR, $\overrightarrow{PX} = j\overrightarrow{PR}$ $\overrightarrow{PR} = \overrightarrow{PO} + \overrightarrow{OR}$ $= -\mathbf{a} + \mathbf{b}$ $\overrightarrow{PX} = j(-\mathbf{a} + \mathbf{b})$ $= -j\mathbf{a} + j\mathbf{b}$
- $\mathbf{b} \quad \overrightarrow{PX} = \overrightarrow{PO} + \overrightarrow{OX}$ $\overrightarrow{OX} = k\overrightarrow{ON}$ $\overrightarrow{ON} = \mathbf{a} + \frac{1}{2}\mathbf{b}$ $\overrightarrow{PX} = -\mathbf{a} + k\left(\mathbf{a} + \frac{1}{2}\mathbf{b}\right)$ $= \left(k 1\right)\mathbf{a} + \frac{1}{2}k\mathbf{b}$
- c As $\overrightarrow{PX} = -j\mathbf{a} + j\mathbf{b}$ and $\overrightarrow{PX} = (k-1)\mathbf{a} + \frac{1}{2}k\mathbf{b}$ then $-j\mathbf{a} + j\mathbf{b} = (k-1)\mathbf{a} + \frac{1}{2}k\mathbf{b}$ The coefficients of \mathbf{a} and \mathbf{b} must be the same, so k-1=-j and $\frac{1}{2}k=j$.
- **d** Solving the equation simultaneously and using substitution:

$$k - 1 = -\frac{1}{2}k$$

$$k = \frac{2}{3}$$

$$j = \frac{1}{3}$$

- $\mathbf{e} \quad \overrightarrow{PX} = -\frac{1}{3}\mathbf{a} + \frac{1}{3}\mathbf{b}$
 - As OPQR is a parallelogram, $\overrightarrow{YR} = \overrightarrow{PX}$. Therefore $\overrightarrow{PX} = \overrightarrow{XY} = \overrightarrow{YR}$, so the line PR is divided into three equal parts. Therefore, the lines ON and OM divide the diagonal PR into three equal parts.