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5 Let P be the size of the population and let ¢
be time. Then the rate of growth of the

population is ar
dt

£ocP
dt

Le. i kP where £ is a positive constant.
t

6 The gradient of the curve is %

% oc xy (product of x- and y-coordinates)

. dy
Le. —=kxy,
e Y
where k is the constant of proportion.
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Multiply both sides by —15 to give
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8 The rate of change of the charge is %
do
— o
dt 0
. do
Le. — =—k
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where £ is a positive constant.
(The negative sign is required as the body is
losing charge.)
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The rate of increase of x is d_
t
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where k is the constant of proportion.

10a Let 7 be the radius of the circle and let ¢ be

time. Then % =04cms.
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This means that the circumference is
increasing at a constant rate of 0.8w cm
per second.
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Let / be the side length of the cube and let
V' be its volume.

Then V =1’ and (Z—It/ =—45
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12 The rate of change of the volume of fluid

in the tank is d—V

dr
LN
dr

1.e. d—V = —K\/?
dt

where K is a positive constant.

(The negative sign is present because fluid is
flowing out of the tank, so the volume left in
the tank is decreasing.)

Let A be the constant cross-section;
then V' = 4h (where 4 is the depth)
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where k = ﬁ 1S a positive constant.
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13a Let / be the length of one side of the cube.
Surface area of cube A4 = 6/°.
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¢ Rate of expansion of surface area is A
t
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Let V be the volume of salt in the funnel
at time ¢.

1
V==mr’h
3
tan30°:% = r=htan30° =

2
V=ln[—jh =lnh3

&Sl

3 3 9
d—V=lnh2 and hence %=i2
dh 3 dV  =h

Given that d—V =-6
dt

dh dh dV 3 18
= X = (-6) =
dt dV dt =wh Th

So the rate of change of the height, 4, is
inversely proportional to 4 and is given by

the differential equation dh __ 182
dt nh
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