

Exercise 3C

1

t	-5	-4	-3	-2	-1	-0.5	0.5	1	2	3	4	5
x = 2t	-10	-8	-6	-4	-2	-1	1	2	4	6	8	10
$y=\frac{5}{t}$	-1	-1.25	-1.67	-2.5	-5	-10	10	5	2.5	1.67	1.25	1

2

t	-4	-3	-2	-1	0	1	2	3	4
$x = t^2$	16	9	4	1	0	1	4	9	16
$y = \frac{t^3}{5}$	-12.8	-5.4	-1.6	-0.2	0	0.2	1.6	5.4	12.8

3

t	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	$-\frac{\pi}{12}$	0	$\frac{\pi}{12}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
$x = \tan t + 1$	0	0.423	0.732	1	1.268	1.577	2	2.732
$y = \sin t$	-0.707	-0.5	-0.259	0	0.259	0.5	0.707	0.866

Pearson

4 a

t	-4	-3	-2	-1	0	1	2	3	4
x = t - 2	-6	-5	-4	-3	-2	-1	0	1	2
$y=t^2+1$	17	10	5	2	1	2	5	10	17

Note that the curve is a parabola with minimum point having coordinates (-2, 1).

b

t	0	0.25	0.5	0.75	1	1.25	1.5	1.75	2
$x=3\sqrt{t}$	0	1.50	2.12	2.60	3.00	3.35	3.67	3.97	4.24
$y=t^3-2t$	0	-0.48	-0.88	-1.08	-1.00	-0.55	0.38	1.86	4.00

4 c

t	-5	-4	-3	-2	-1	0	1	2	3	4	5
$x = t^2$	25	16	9	4	1	0	1	4	9	16	25
y = (2-t)(t+3)	-14	-6	0	4	6	6	4	0	-6	-14	-24

P Pearson

Note that the curve crosses the x-axis at x = 4 and x = 9 and touches the y-axis at y = 6.

d

t	$-\frac{\pi}{4}$	$-\frac{3\pi}{16}$	$-\frac{\pi}{8}$	$-\frac{\pi}{16}$	0	$\frac{\pi}{16}$	$\frac{\pi}{8}$	$\frac{3\pi}{16}$	$\frac{\pi}{4}$
$x=2\sin t-1$	-2.41	-2.11	-1.77	-1.39	-1.00	-0.61	-0.23	0.11	0.41
$y = 5\cos t + 1$	4.54	5.16	5.62	5.90	6.00	5.90	5.62	5.16	4.54

Note the symmetry in the curve about the line x = -1 with maximum value y = 6.

e

t	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	$-\frac{\pi}{12}$	0	$\frac{\pi}{12}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{5\pi}{12}$	$\frac{\pi}{2}$
$x = \sec^2 t - 3$	-1.00	-1.67	-1.93	-2.00	-1.93	-1.67	-1.00	1.00	11.93	8
$y=2\sin t+1$	0.41	0	0.48	1.00	1.52	2.00	2.41	2.73	2.93	3.00

Note that as $y \to 3$ (y approaches 3), $x \to \infty$ (x tends to infinity, that is, gets very large without bound). The line y = 3 is an asymptote of the curve.

4 f

t	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
$x = t - 3\cos t$	-3.00	-1.34	1.57	4.48	6.14	6.05	4.71	3.38	3.28
$y=1+2\sin t$	1.00	2.41	3.00	2.41	1.00	-0.41	-1.00	-0.41	1.00

Pearson

5 a $x = 3 - t \implies t = 3 - x$ (1)

Substitute (1) into $y = t^2 - 2$

$$y = (3 - x)^2 - 2$$

or $y = x^2 - 6x + 7$

b

t	-2	-1	0	1	2	3
x=3-t	5	4	3	2	1	0
$y=t^2-2$	2	-1	-2	-1	2	7

The curve is quadratic with a minimum value of y = -2 that occurs when x = 3.

6 a
$$x = 9\cos t - 2 \Rightarrow \frac{x+2}{9} = \cos t$$
 (1)
 $y = 9\sin t + 1 \Rightarrow \frac{y-1}{9} = \sin t$ (2)

Substitute (1) and (2) into $\cos^2 t + \sin^2 t = 1$

$$\left(\frac{x+2}{9}\right)^2 + \left(\frac{y-1}{9}\right)^2 = 1$$
$$(x+2)^2 + (y-1)^2 = 81$$

So a = 2, b = -1 and c = 81.

The curve is part of a circle, centre (-2,1) and with radius 9 units.

b

t	$-\frac{\pi}{6}$	$-\frac{\pi}{12}$	0	$\frac{\pi}{12}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{5\pi}{12}$	$\frac{\pi}{2}$
$x=9\cos t-2$	5.79	6.69	7.00	6.69	5.79	4.36	2.50	0.33	-2.00
$y=9\sin t+1$	-3.50	-1.33	1.00	3.33	5.50	7.36	8.79	9.69	10.00

c *r* = 9

$$\theta = \frac{\pi}{6} + \frac{\pi}{2} = \frac{2\pi}{3}$$

Arc length
$$= r\theta = 9 \times \frac{2\pi}{3} = 6\pi$$

 γ_{π}

Pure Mathematics 4

Pearson

Challenge

t	-4	-3	-2	-1.2	-0.8	0	1	2	3	4
$x = \frac{9t}{1+t^3}$	0.57	1.04	2.57	14.84	-14.75	0	4.50	2	0.96	0.55
$y = \frac{9t^2}{1+t^3}$	-2.29	-3.12	-5.14	-17.80	11.80	0	4.50	4	2.89	2.22

Solution Bank

As *t* increases from t = 0, the function f(x) creates, in an anticlockwise direction, a small loop in the first quadrant.

To consider the behaviour of the function for t < 0, note that the parametric equations are not defined at t = -1. It is, therefore, important to investigate the behaviour of the curve as *t* approaches this value from above and from below. Choose some values of *t* that are close to -1 and on either side of it. Then observe the behaviour of the curve as *t* moves away from t = -1 in both directions. In particular, check what happens as $t \to -\infty$.

As *t* approaches -1 from the positive direction the curve heads off to infinity in the second quadrant, and as it approaches -1 from the negative direction it heads off to infinity in the fourth quadrant.

Note that any set of *t* values can be selected and that they do not need to be spaced equidistantly. In sketching more complicated curves, it is often important to consider additional values of *t*. Select positions such as t = -1 or regions, such as $0 \le t \le 4$, where you notice that the curve is not moving in the same direction.