Solution Bank

Exercise 3A

1 **a**
$$x = t - 2$$

so
$$t = x + 2$$
 (1)

$$y = t^2 + 1 \tag{2}$$

Substitute (1) into (2):

$$y = (x+2)^2 + 1$$

$$= x^2 + 4x + 4 + 1$$

$$\therefore y = x^2 + 4x + 5$$

$$x = t - 2, -4 \le t \le 4$$

So the domain of f(x) is $-6 \le x \le 2$.

$$y = t^2 + 1, -4 \le t \le 4$$

So the range of f(x) is $1 \le y \le 17$.

b
$$x = 5 - t$$

so
$$t = 5 - x$$
 (1)

$$y = t^2 - 1 \tag{2}$$

Substitute (1) into (2):

$$y = (5-x)^2 - 1$$

$$= 25 - 10x + x^2 - 1$$

$$\therefore y = x^2 - 10x + 24$$

$$x = 5 - t$$
, $t \in$

So the domain of f(x) is $x \in ...$

$$y = t^2 - 1, t \in$$

So the range of f(x) is $y \ge -1$.

$$\mathbf{c} \quad x = \frac{1}{4}$$

so
$$t = \frac{1}{x}$$
 (1)

$$y = 3 - t \tag{2}$$

Substitute (1) into (2):

$$y = 3 - \frac{1}{x}$$

$$x = \frac{1}{t}, \ t \neq 0$$

So the domain of f(x) is $x \neq 0$.

$$v = 3 - t, t \neq 0$$

Range of f(x) is $y \neq 3$.

d
$$x = 2t + 1$$

so
$$t = \frac{x-1}{2}$$
 (1)

$$y = \frac{1}{t} \qquad (2)$$

Substitute (1) into (2):

$$y = \frac{1}{\frac{x-1}{2}}$$

$$y = \frac{2}{x - 1}$$

$$x = 2t + 1, t > 0$$

So the domain of f(x) is x > 1.

$$y = \frac{1}{t}, \ t > 0$$

So the range of f(x) is y > 0.

e
$$x = \frac{1}{t-2}$$

so
$$t - 2 = \frac{1}{r}$$

$$t = 2 + \frac{1}{x} \tag{1}$$

$$y = t^2 \tag{2}$$

Substitute (1) into (2):

$$y = \left(2 + \frac{1}{x}\right)^2$$

$$y = \left(\frac{2x+1}{x}\right)^2$$

$$x = \frac{1}{t-2}, \ t > 2$$

So the domain of f(x) is x > 0.

$$y = t^2, \ t > 2$$

So the range of f(x) is y > 4.

Solution Bank

1 **f**
$$x = \frac{1}{t+1}$$

so
$$t+1=\frac{1}{x}$$

$$t = \frac{1}{x} - 1 \tag{1}$$

$$y = \frac{1}{t - 2} \tag{2}$$

Substitute (1) into (2):

$$y = \frac{1}{\frac{1}{x} - 1 - 2}$$

$$= \frac{1}{\frac{1}{x} - 3}$$

$$= \frac{1}{\frac{1 - 3x}{x}}$$

$$\therefore y = \frac{x}{1 - 3x}$$

$$x = \frac{1}{t+1}, \ t > 2$$

So the domain of f(x) is $0 < x < \frac{1}{3}$

$$y = \frac{1}{t-2}, \ t > 2, \ t > 2$$

So the range of f(x) is y > 0.

2 a i
$$x = 2\ln(5-t)$$

$$\frac{1}{2}x = \ln(5-t)$$

$$e^{\frac{1}{2}x} = 5 - t$$

So
$$t = 5 - e^{\frac{1}{2}x}$$

Substitute $t = 5 - e^{\frac{1}{2}x}$ into $y = t^2 - 5$:

$$y = (5 - e^{\frac{1}{2}x})^2 - 5$$
$$= 25 - 10e^{\frac{1}{2}x} + e^x - 5$$
$$= 20 - 10e^{\frac{1}{2}x} + e^x$$

$$x = 2 \ln (5-t), t < 4$$

When
$$t = 4$$
, $x = 2 \ln 1 = 0$

and as t increases $2\ln(5-t)$ decreases.

So the range of the parametric function for x is x > 0.

Hence the Cartesian equation is

$$y = 20 - 10e^{\frac{1}{2}x} + e^x, \ x > 0$$

ii
$$y = t^2 - 5, t < 4$$

 $y = t^2 - 5$ is a quadratic function with minimum value -5 at t = 0.

So the range of the parametric function for y is $y \ge -5$.

Hence the range of f(x) is $y \ge -5$.

b i
$$x = \ln(t+3)$$

$$e^x = t + 3$$

$$e^x - 3 = t$$

Substitute $t = e^x - 3$ into $y = \frac{1}{t+5}$:

$$y = \frac{1}{e^x - 3 + 5} = \frac{1}{e^x + 2}$$

$$x = \ln(t+3), \ t > -2$$

When
$$t = -2$$
, $x = \ln 1 = 0$

and as t increases, $\ln(t+3)$ increases.

So the range of the parametric function for x is x > 0.

Hence the Cartesian equation is

$$y = \frac{1}{e^x + 2}, \ x > 0$$

Solution Bank

2 b ii
$$y = \frac{1}{t+5}, t > -2$$

When
$$t = -2$$
, $y = \frac{1}{3}$

and as t increases,
$$\frac{1}{t+5}$$
 decreases

towards zero.

So the range of the parametric function for y is $0 < y < \frac{1}{3}$

Hence the range of f(x) is $0 < y < \frac{1}{3}$

$$\mathbf{c} \quad \mathbf{i} \quad x = \mathbf{e}^t$$

So
$$y = e^{3t} = (e^t)^3 = x^3$$

(Note that since y is a power of x there is no need to substitute for t.)

$$x = e^t, t \in$$

The range of the parametric function for x is x > 0.

Hence the Cartesian equation is $y = x^3$, x > 0

ii
$$y = e^{3t}, t \in \mathbb{R}$$

The range of the parametric function for y is y > 0.

Hence the range of f(x) is y > 0.

3 a
$$x = \sqrt{t}$$

so
$$x^2 = t$$

Substitute $t = x^2$ into y = t(9-t):

$$y = x^2(9 - x^2)$$

$$=9x^2-x^4$$

$$x = \sqrt{t}, \ 0 \leqslant t \leqslant 5$$

The range of the parametric function for x is $0 \le x \le \sqrt{5}$.

Hence the Cartesian equation is

$$y = 9x^2 - x^4, \ 0 \le x \le \sqrt{5}$$

$$y = t(9-t), \ 0 \le t \le 5$$

When
$$t = 0$$
, $y = 0$;

when
$$t = 5, y = 20;$$

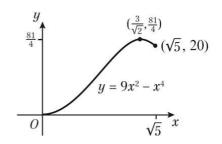
and y = t(9-t) is a quadratic function

with maximum value $\frac{81}{4}$ at $t = \frac{9}{2}$

So the range of the parametric function for y is $0 \le y \le \frac{81}{4}$

Hence the range of f(x) is $0 \le y \le \frac{81}{4}$

b



Solution Bank

4 a i
$$x = 2t^2 - 3$$

$$x + 3 = 2t^2$$

$$\frac{x+3}{2} = t^2$$

$$\sqrt{x+3}$$

$$\pm \sqrt{\frac{x+3}{2}} = t$$

Take the positive root since t > 0.

Substitute
$$t = \sqrt{\frac{x+3}{2}}$$
 into $y = 9 - t^2$:

$$y = 9 - \left(\sqrt{\frac{x+3}{2}}\right)^2 = 9 - \frac{x+3}{2}$$
$$= \frac{18 - x - 3}{2} = \frac{15 - x}{2}$$

The Cartesian equation is $y = \frac{15}{2} - \frac{1}{2}x$

ii
$$x = 2t^2 - 3$$
, $t > 0$

 $2t^2-3$ is a quadratic function with minimum value -3 at t = 0. The range of the parametric function for x is x > -3.

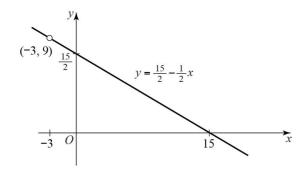
Hence the domain of f(x) is x > -3.

$$y = 9 - t^2, t > 0$$

 $y = 9 - t^2$ is a quadratic function with maximum value 9 at t = 0. So the range of the parametric function for y is y < 9.

Hence the range of f(x) is y < 9.

iii



b i
$$x = 3t - 1$$

 $x + 1 = 3t$

$$\frac{x + 1}{2} = t$$

Substitute
$$t = \frac{x+1}{3}$$
 into

$$y = (t-1)(t+2)$$
:

$$y = \left(\frac{x+1}{3} - 1\right) \left(\frac{x+1}{3} + 2\right)$$
$$= \left(\frac{x+1-3}{3}\right) \left(\frac{x+1+6}{3}\right)$$
$$= \left(\frac{x-2}{3}\right) \left(\frac{x+7}{3}\right)$$

The Cartesian equation is $y = \frac{1}{9}(x-2)(x+7)$

ii
$$x = 3t - 1, -4 < t < 4$$

When
$$t = -4$$
, $x = -13$;

when
$$t = 4$$
, $x = 11$.

The range of the parametric function for x is -13 < x < 11.

So the domain of f(x) is -13 < x < 11.

$$y = (t-1)(t+2), -4 < t < 4$$

When
$$t = -4$$
, $v = 10$;

when
$$t = 4$$
, $y = 18$;

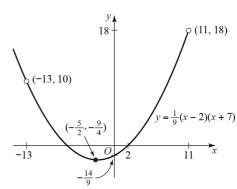
and (t-1)(t+2) is a quadratic function with minimum value $-\frac{9}{4}$ at $t = -\frac{1}{2}$.

The range of the parametric function for *y* is $-\frac{9}{4} \le y < 18$.

Hence the range of f(x) is $-\frac{9}{4} \le y < 18$.

Note: Due to symmetry, the minimum value of y occurs midway between the roots t = 1 and t = -2, i.e. at $t = -\frac{1}{2}$.

iii



Solution Bank

4 c i x = t + 1 x - 1 = t

Substitute t = x - 1 into $y = \frac{1}{t - 1}$:

$$y = \frac{1}{x - 1 - 1} = \frac{1}{x - 2}$$

The Cartesian equation is

$$y = \frac{1}{x - 2}$$

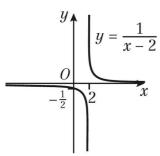
ii $x = t + 1, t \ne 1$

So the domain of f(x) is $x \neq 2$.

$$y = \frac{1}{t-1}, \ t \neq 1,$$

So the range of f(x) is $y \neq 0$.

iii



d i $x = \sqrt{t} - 1$

$$x + 1 = \sqrt{t}$$

$$(x+1)^2 = t$$

Substitute $t = (x+1)^2$ into $y = 3\sqrt{t}$:

$$y = 3\sqrt{(x+1)^2} = 3(x+1)$$

The Cartesian equation is y = 3x + 3

ii $x = \sqrt{t} - 1, t > 0$

When
$$t = 0$$
, $x = -1$

and as t increases $\sqrt{t} - 1$ increases.

The range of the parametric function for x is x > -1.

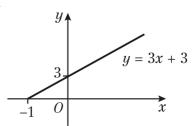
So the domain of f(x) is x > -1.

$$y = 3\sqrt{t}, \ t > 0$$

The range of the parametric function for y is y > 0.

So the range of f(x) is y > 0.

d iii



e i $x = \ln(4-t)$

$$e^x = 4 - t$$

$$t = 4 - e^x$$

Substitute $t = 4 - e^x$ into y = t - 2:

$$y = 4 - e^x - 2 = 2 - e^x$$

The Cartesian equation is $y = 2 - e^x$

ii $x = \ln(4-t), t < 3$

When t = 3, $x = \ln 1 = 0$

and as t decreases $\ln(4-t)$ increases.

So the domain of f(x) is x > 0.

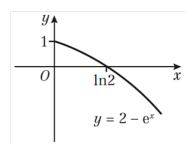
$$y = t - 2$$
, $t < 3$

When t = 3, y = 1

and as t decreases t-2 decreases.

So the range of f(x) is y < 1.

e iii



Solution Bank

5 a C_1 : x = 1 + 2t

$$\Rightarrow \frac{x-1}{2} = t$$

Substitute $t = \frac{x-1}{2}$ into y = 2 + 3t:

$$y = 2 + 3\left(\frac{x-1}{2}\right)$$
$$= \frac{4+3x-3}{2} = \frac{3x+1}{2}$$

So the Cartesian equation of C_1 is $y = \frac{3}{2}x + \frac{1}{2}$

$$C_2: x = \frac{1}{2t - 3}$$

$$2t - 3 = \frac{1}{x}$$

$$2t = 3 + \frac{1}{x} = \frac{3x + 1}{x}$$

$$\therefore t = \frac{3x + 1}{2x}$$
and $y = \frac{t}{2t - 3} = t\left(\frac{1}{2t - 3}\right)$

Substitute $t = \frac{3x+1}{2x}$ and $x = \frac{1}{2t-3}$

into
$$y = t \left(\frac{1}{2t - 3} \right)$$
:

$$y = \left(\frac{3x+1}{2x}\right)x = \frac{3x+1}{2}$$

So the Cartesian equation of C_2 is

$$y = \frac{3}{2}x + \frac{1}{2}$$

Therefore C_1 and C_2 are segments of the same line $y = \frac{3}{2}x + \frac{1}{2}$

b For the length of each segment find the domain and range of
$$C_1$$
 and C_2 .

For
$$C_1$$
: $x = 1 + 2t$, $2 < t < 5$

When
$$t = 2, x = 5$$
;

when
$$t = 5$$
, $x = 11$.

The range of the parametric function for x is 5 < x < 11,

so the domain of C_1 is 5 < x < 11.

$$y = 2 + 3t, 2 < t < 5$$

When
$$t = 2, y = 8$$
;

when
$$t = 5$$
, $y = 17$.

The range of the parametric function for y is 8 < y < 17,

so the range of C_1 is 8 < y < 17.

The endpoints of C_1 have coordinates (5, 8) and (11, 17).

∴ length of
$$C_1 = \sqrt{(11-5)^2 + (17-8)^2}$$

= $\sqrt{36+81}$
= $\sqrt{117} = 3\sqrt{13}$

For
$$C_2$$
: $x = \frac{1}{2t-3}$, $2 < t < 3$

When
$$t = 2$$
, $x = 1$;

when
$$t = 3$$
, $x = \frac{1}{3}$.

The range of the parametric function for x is $\frac{1}{3} < x < 1$,

so the domain of C_2 is $\frac{1}{3} < x < 1$.

$$y = \frac{t}{2t-3}$$
, 2 < t < 3

When t = 2, y = 2;

when t = 3, y = 1.

The range of the parametric function for y is 1 < y < 2,

so the range of C_2 is 1 < y < 2.

The endpoints of C_2 have coordinates ` $(\frac{1}{3}, 1)$ and (1, 2).

∴ length of
$$C_2 = \sqrt{\left(1 - \frac{1}{3}\right)^2 + \left(2 - 1\right)^2}$$

= $\sqrt{\frac{4}{9} + 1} = \sqrt{\frac{4 + 9}{9}} = \frac{\sqrt{13}}{3}$

Pure Mathematics 4 Solution Bank

6 a
$$x = \frac{3}{t} + 2, t \neq 0$$

The range of the parametric function for x is $x \neq 2$.

(This is also the domain of the Cartesian equation y = f(x).)

$$y = 2t - 3 - t^2, \ t \neq 0$$

When
$$t = 0$$
, $y = -3$;

 $2t-3-t^2$ is a quadratic function with maximum value -2 at t=1.

The range of the parametric function for y is $y \le -2$, $y \ne -3$.

(This is also the range of the Cartesian equation y = f(x).)

Note: To find the maximum point of the quadratic $y = 2t - 3 - t^2$,

either solve
$$\frac{\mathrm{d}y}{\mathrm{d}t} = 0$$

$$2 - 2t = 0$$

$$2 = 2t$$

$$t = 1$$

$$\therefore y = 2(1) - 3 - (1)^2 = -2$$

or complete the square

$$y = -((t-1)^2 - 1 + 3)$$

$$= -\left((t-1)^2 + 2\right)$$

$$=-(t-1)^2-2$$

b
$$x = \frac{3}{t} + 2$$

$$x-2=\frac{3}{t}$$

$$t = \frac{3}{x - 2}$$

Substitute $t = \frac{3}{x-2}$ into $y = 2t - 3 - t^2$:

$$y = 2\left(\frac{3}{x-2}\right) - 3 - \left(\frac{3}{x-2}\right)^{2}$$

$$= \frac{6(x-2) - 3(x-2)^{2} - 3^{2}}{(x-2)^{2}}$$

$$= -3\left(\frac{-2(x-2) + (x-2)^{2} + 3}{(x-2)^{2}}\right)$$

$$= -3\left(\frac{-2x + 4 + x^{2} - 4x + 4 + 3}{(x-2)^{2}}\right)$$

This is a Cartesian equation in the form

$$y = \frac{A(x^2 + bx + c)}{(x-2)^2}$$
 with

 $=\frac{-3(x^2-6x+11)}{(x-2)^2}$

$$A = -3$$
, $b = -6$ and $c = 11$.

7 **a**
$$x = \ln(t+3), t > -2$$

$$e^{x} = t + 3$$

$$e^x - 3 = t$$

Substitute $t = e^x - 3$ into $y = \frac{1}{t+5}$:

$$y = \frac{1}{e^x - 3 + 5} = \frac{1}{e^x + 2}$$

When t = -2, $x = \ln 1 = 0$

and as t increases $\ln(t+3)$ increases.

The range of the parametric function for x is x > 0,

so the domain of f(x) is x > 0.

Therefore the Cartesian equation is

$$y = \frac{1}{e^x + 2}$$
, $x > k$ where $k = 0$.

Solution Bank

7 **b**
$$y = \frac{1}{t+5}, t > -2$$

When
$$t = -2$$
, $y = \frac{1}{3}$

and as t increases,
$$\frac{1}{t+5}$$
 decreases

towards zero.

The range of the parametric function for *y* is $0 < y < \frac{1}{3}$

So the range of f(x) is $0 < y < \frac{1}{3}$

8 a
$$x = 3\sqrt{t}$$

$$\frac{x}{3} = \sqrt{t}$$

$$\frac{x^2}{9} = t$$

Substitute $t = \frac{x^2}{9}$ into $y = t^3 - 2t$:

$$y = \left(\frac{x^2}{9}\right)^3 - 2\left(\frac{x^2}{9}\right) = \frac{x^6}{729} - \frac{2x^2}{9}$$

The Cartesian equation is

$$y = \frac{x^6}{729} - \frac{2x^2}{9}$$

$$x = 3\sqrt{t}, \ 0 \leqslant t \leqslant 2$$

When
$$t = 0$$
, $x = 0$;

when
$$t = 2$$
, $x = 3\sqrt{2}$.

The range of the parametric function for x is $0 \le x \le 3\sqrt{2}$

so the domain of f(x) is $0 \le x \le 3\sqrt{2}$.

$$\mathbf{b} \quad \frac{\mathrm{d}y}{\mathrm{d}t} = 3t^2 - 2$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = 0 \text{ when } 3t^2 - 2 = 0$$

$$3t^2 = 2$$

$$t^2 = \frac{2}{3}$$

$$t = \sqrt{\frac{2}{3}} \quad (\text{as } 0 \le t \le 2)$$

$$\mathbf{c} \quad \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = 6t$$

When
$$t = \sqrt{\frac{2}{3}}$$
, $\frac{d^2 y}{dt^2} = 6(\sqrt{\frac{2}{3}}) > 0$

So $t = \sqrt{\frac{2}{3}}$ gives a minimum point of the parametric function for y. The minimum value of y is

$$\left(\sqrt{\frac{2}{3}}\right)^3 - 2\left(\sqrt{\frac{2}{3}}\right)$$

$$= \frac{2}{3}\sqrt{\frac{2}{3}} - \frac{6}{3}\sqrt{\frac{2}{3}} = -\frac{4}{3}\frac{\sqrt{2}}{\sqrt{3}} = -\frac{4\sqrt{6}}{9}$$

When
$$t = 0$$
, $y = 0$;

when
$$t = 2$$
, $y = 4$.

The range of the parametric function

for y is
$$-\frac{4\sqrt{6}}{9} \leqslant y \leqslant 4$$
.

Therefore the range of f(x) is

$$-\frac{4\sqrt{6}}{9} \leqslant f(x) \leqslant 4.$$

9 **a**
$$x = t^3 - t = t(t^2 - 1)$$

 $\Rightarrow x^2 = t^2(t^2 - 1)^2$ (1)

$$y = 4 - t^2 \Rightarrow t^2 = 4 - y \quad (2)$$

Substitute (2) into (1):

$$x^2 = (4 - v)(4 - v - 1)^2$$

$$x^2 = (4 - y)(3 - y)^2$$

This is in the form $x^2 = (a - y)(b - y)^2$ with a = 4 and b = 3.

b
$$y = 4 - t^2, t \in \mathbb{R}$$

This is a quadratic function of t, and (by symmetry) the maximum value of y occurs at t = 0, where y = 4.

So 4 is the maximum y-coordinate.

Pure Mathematics 4 Solution Bank

Challenge

a Squaring the parametric functions gives

$$x^2 = \left(\frac{1 - t^2}{1 + t^2}\right)^2 \tag{1}$$

$$y^2 = \left(\frac{2t}{1+t^2}\right)^2 \tag{2}$$

Add (1) and (2):

$$x^{2} + y^{2} = \left(\frac{1 - t^{2}}{1 + t^{2}}\right)^{2} + \left(\frac{2t}{1 + t^{2}}\right)^{2}$$

$$= \frac{(1 - t^{2})^{2} + 4t^{2}}{(1 + t^{2})^{2}}$$

$$= \frac{1 - 2t^{2} + t^{4} + 4t^{2}}{(1 + t^{2})^{2}}$$

$$= \frac{1 + 2t^{2} + t^{4}}{(1 + t^{2})^{2}}$$

$$= \frac{(1 + t^{2})^{2}}{(1 + t^{2})^{2}} = 1$$

So a Cartesian equation for curve C is $x^2 + y^2 = 1$.

b
$$x^2 + y^2 = 1$$

 $\Rightarrow (x-0)^2 + (y-0)^2 = 1$

Curve C is the equation of a circle with centre (0, 0) and radius 1.