

Exercise 1A

- 1 B At least one multiple of three is odd.
- 2 a At least one rich person is not happy.
 - **b** There is at least one prime number between 10 million and 11 million.
 - **c** There exists prime numbers p and q such that (pq + 1) is not prime.
 - **d** There is a number of the form $2^n 1$ that is either not prime or not a multiple of 3.
 - e None of the above statements is true.
- **3** a There exists a number n such that n^2 is odd but n is even.
 - **b** Assume *n* is even, so write n = 2k, for some integer k. $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$ Since $2k^2$ is an integer, n^2 is even. This contradicts the assumption that n^2 is odd.

This contradicts the assumption that n^2 is odd. Therefore, if n^2 is odd then n must be odd.

4 a Assumption: there is a greatest even integer, 2n, for some integer n. 2(n+1) is also an even integer, since n+1 is an integer, and 2(n+1) > 2nSo there exists an even integer greater that 2n.

This contradicts the assumption that the greatest even integer is 2n.

Therefore there is no greatest even integer.

b Assumption: there exists a number n such that n^3 is even but n is odd. n is odd so write n = 2k + 1, where k is an integer.

$$n^{3} = (2k + 1)^{3}$$

$$= 8k^{3} + 12k^{2} + 6k + 1$$

$$= 2(4k^{3} + 6k^{2} + 3k) + 1$$

So n^3 is odd, since $4k^3 + 6k^2 + 3k$ is an integer.

This contradicts the assumption that n^3 is even.

Therefore, if n^3 is even then n must be even.

c Assumption: if pq is even then neither p nor q is even.

Assume p is odd, p = 2k + 1, where k is an integer.

Assume q is odd, q = 2m + 1, where m is an integer.

$$pq = (2k+1)(2m+1)$$

= $2km + 2k + 2m + 1$
= $2(km + k + m) + 1$

So pq is odd, since km + k + m is an integer.

This contradicts the assumption that pq is even.

Therefore, if pq is even then at least one of p and q is even.

4 d Assumption: if p + q is odd than neither p nor q is odd.

Assume p is even, p = 2k, where k is an integer.

Assume q is even, q = 2m, where m is an integer.

$$p + q = 2k + 2m = 2(k + m)$$

So p + q is even, since k + m is an integer.

This contradicts the assumption that p + q is odd.

Therefore, if p + q is odd then at least one of p and q is odd.

5 a Assumption: if ab is an irrational number then neither a nor b is irrational.

If a is rational, then $a = \frac{c}{d}$ where c and d are integers.

If b is rational, then $b = \frac{e}{f}$ where e and f are integers.

Then $ab = \frac{ce}{df}$, where ce is an integer, df is an integer.

Therefore *ab* is a rational number.

This contradicts assumption that *ab* is irrational.

Therefore, if ab is an irrational number then at least one of a and b is an irrational number.

b Assumption: if a + b is an irrational number then neither a nor b is irrational.

If a is rational, then $a = \frac{c}{d}$ where c and d are integers.

If b is rational, then $b = \frac{e}{f}$ where e and f are integers.

Then $a + b = \frac{cf + de}{df}$, where cf, de and df are integers.

So a + b is rational. This contradicts the assumption that a + b is irrational.

Therefore if a + b is irrational then at least one of a and b is irrational.

c Many possible answers

e.g.
$$a = 2 - \sqrt{2}$$
, $b = \sqrt{2}$, or $a = e$, $b = -e$.

6 Assumption: there exist integers a and b such that 21a + 14b = 1.

Since 21 and 14 are multiples of 7, divide both sides by 7.

So now
$$3a + 2b = \frac{1}{7}$$

3a is also an integer. 2b is also an integer.

The sum of two integers will always be an integer, so 3a + 2b is an integer.

This contradicts the statement that

$$3a + 2b = \frac{1}{7}$$

Therefore there exist no integers a and b for which 21a + 14b = 1.

7 a Assumption: There exists a number n such that n^2 is a multiple of 3, but n is not a multiple of 3.

All multiples of 3 can be written in the form n = 3k where k is an integer, therefore 3k + 1 and 3k + 2 are not multiples of 3.

Let
$$n = 3k + 1$$

 $n^2 = (3k + 1)^2$
 $= 9k^2 + 6k + 1$
 $= 3(3k^2 + 2k) + 1$

In this case n^2 is not a multiple of 3, since $3k^2 + 2k$ is an integer.

Let
$$n = 3k + 2$$

 $n^2 = (3k + 2)^2$
 $= 9k^2 + 12k + 4$
 $= 3(3k^2 + 4k + 1) + 1$

In this case n^2 is also not a multiple of 3, since $3k^2 + 4k + 1$ is an integer.

This contradicts the assumption that n^2 is a multiple of 3.

Therefore if n^2 is a multiple of 3, n is a multiple of 3.

b Assumption: $\sqrt{3}$ is a rational number.

Then
$$\sqrt{3} = \frac{a}{b}$$
 for some integers a and b .

Further assume that this fraction is in its simplest terms:

there are no common factors between a and \hat{b} .

So
$$3 = \frac{a^2}{b^2}$$
 or $a^2 = 3b^2$

Therefore a^2 must be a multiple of 3.

We know from part \mathbf{a} that this means a must also be a multiple of 3.

Write
$$a = 3c$$
, which means $a^2 = (3c)^2 = 9c^2$.

Now
$$9c^2 = 3b^2$$
, or $3c^2 = b^2$.

Therefore b^2 must be a multiple of 3, which means b is also a multiple of 3.

If a and b are both multiples of 3, this contradicts the statement that there are no common factors between a and b.

Therefore, $\sqrt{3}$ is an irrational number.

8 Assumption: there is an integer solution to the equation $x^2 - y^2 = 2$.

Remember that
$$x^2 - y^2 = (x - y)(x + y) = 2$$
.

To make a product of 2 using integers, the possible pairs are: (2, 1), (1, 2), (-2, -1)

and (-1, -2). Since $(-x^2) = x^2$, we may assume that x is positive, and similarly for y. So we only need to consider the possibilities (2, 1) and (1, 2).

Consider each possibility in turn:

$$x - y = 2$$
 and $x + y = 1 \Rightarrow x = \frac{3}{2}$, $y = -\frac{1}{2}$
 $x - y = 1$ and $x + y = 2 \Rightarrow x = \frac{3}{2}$, $y = \frac{1}{2}$

This contradicts the statement that there is an integer solution to the equation $x^2 - y^2 = 2$.

Therefore the original statement must be true:

There are no integer solutions to the equation $x^2 - y^2 = 2$.

9 Assumption: $\sqrt[3]{2}$ is a rational number

Then
$$\sqrt[3]{2} = \frac{a}{b}$$
 for some integers a and b.

Further assume that this fraction is in its simplest terms:

there are no common factors between a and b.

If
$$\sqrt[3]{2} = \frac{a}{b}$$
 then $2 = \frac{a^3}{b^3}$ or $2b^3 = a^3$.

This means that a^3 is even, since b^3 is an integer, and so a must also be even. If a is even, a = 2n.

So
$$a^3 = 2b^3$$
 becomes $(2n)^3 = 2b^3$ which means $8n^3 = 2b^3$ or $4n^3 = b^3$ or $2(2n^3) = b^3$.

This means that b^3 must be even, since $2n^3$ is an integer, so b is also even.

If a and b are both even, they will have a common factor of 2.

This contradicts the statement that *a* and *b* have no common factors.

We can conclude the original statement is true: $\sqrt[3]{2}$ is an irrational number.

10 a The number $\frac{a-b}{b}$ could be negative.

e.g. If
$$n = \frac{1}{2}$$
, $n - 1$ is non-positive.

b Assumption: There is a least positive rational number, n.

$$n = \frac{a}{b}$$
 where a and b are integers.

Let
$$m = \frac{a}{2b}$$
. Since a and b are integers, m is rational and $m < n$.

This contradicts the statement that n is the least positive rational number.

Therefore, there is no least positive rational number.