Core Mathematics 4 Paper J

1. Show that

$$\int_{2}^{4} x(x^{2} - 4)^{\frac{1}{2}} dx = 8\sqrt{3}.$$
 [5]

2. Simplify *(i)*

$$\frac{2x^2 + 3x - 9}{2x^2 - 7x + 6}.$$
 [2]

- Find the quotient and remainder when $(2x^4 1)$ is divided by $(x^2 2)$. [4]
- **3.** A curve has the equation

$$2\sin 2x - \tan y = 0.$$

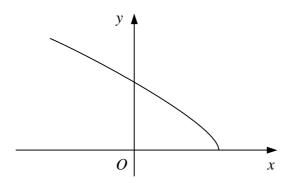
- Find an expression for $\frac{dy}{dx}$ in its simplest form in terms of x and y. [4]
- Show that the tangent to the curve at the point $(\frac{\pi}{6}, \frac{\pi}{3})$ has the equation (ii)

$$y = \frac{1}{2}x + \frac{\pi}{4}.$$
 [3]

The gradient at any point (x, y) on a curve is proportional to \sqrt{y} . 4.

Given that the curve passes through the point with coordinates (0, 4),

show that the equation of the curve can be written in the form *(i)*


$$2\sqrt{y} = kx + 4,$$

where k is a positive constant.

[5]

Given also that the curve passes through the point with coordinates (2, 9),

(ii) find the equation of the curve in the form y = f(x). [3] **5.**

The diagram shows the curve with parametric equations

$$x = 2 - t^2$$
, $y = t(t+1)$, $t \ge 0$.

- (i) Find the coordinates of the points where the curve meets the coordinate axes. [3]
- (ii) Find an equation for the tangent to the curve at the point where t = 2, giving your answer in the form ax + by + c = 0. [6]

6.

$$f(x) = \frac{1+3x}{(1-x)(1-3x)}, |x| < \frac{1}{3}.$$

(i) Find the values of the constants A and B such that

$$f(x) = \frac{A}{1-x} + \frac{B}{1-3x}.$$
 [3]

(ii) Evaluate

$$\int_0^{\frac{1}{4}} f(x) dx,$$

giving your answer as a single logarithm.

[4]

(iii) Find the series expansion of f(x) in ascending powers of x up to and including the term in x^3 , simplifying each coefficient. [5]

Turn over

7. Relative to a fixed origin, two lines have the equations

$$\mathbf{r} = \begin{pmatrix} 4 \\ 1 \\ 1 \end{pmatrix} + s \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$$

and

$$\mathbf{r} = \begin{pmatrix} -3\\1\\-6 \end{pmatrix} + t \begin{pmatrix} 3\\a\\b \end{pmatrix},$$

where a and b are constants and s and t are scalar parameters.

Given that the two lines are perpendicular,

(i) find a linear relationship between a and b. [2]

Given also that the two lines intersect,

- (ii) find the values of a and b, [8]
- (iii) find the coordinates of the point where they intersect. [2]
- **8.** (*i*) Find

$$\int x^2 e^{\frac{1}{2}x} dx.$$
 [6]

(ii) Using the substitution $u = \sin t$, evaluate

$$\int_0^{\frac{\pi}{2}} \sin^2 2t \cos t \, \mathrm{d}t. \tag{7}$$