Core Mathematics 4 Paper A

1. Express

$$\frac{2x}{2x^2+3x-5} \div \frac{x^3}{x^2-x}$$

as a single fraction in its simplest form.

[4]

2. A curve has the equation

$$2x^2 + xy - y^2 + 18 = 0.$$

Find the coordinates of the points where the tangent to the curve is parallel to the *x*-axis.

[7]

3. The first four terms in the series expansion of $(1 + ax)^n$ in ascending powers of x are

$$1-4x+24x^2+kx^3$$
,

where a, n and k are constants and |ax| < 1.

(i) Find the values of
$$a$$
 and n . [6]

(ii) Show that
$$k = -160$$
. [2]

4. Relative to a fixed origin, *O*, the points *A* and *B* have position vectors $\begin{pmatrix} 1 \\ 5 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 6 \\ 3 \\ -6 \end{pmatrix}$ respectively.

Find, in exact, simplified form,

(i) the cosine of
$$\angle AOB$$
, [4]

(ii) the area of triangle
$$OAB$$
, [3]

(
$$iii$$
) the shortest distance from A to the line OB . [2]

5. (i) Use the derivatives of $\sin x$ and $\cos x$ to prove that

$$\frac{\mathrm{d}}{\mathrm{d}x}(\tan x) = \sec^2 x. \tag{4}$$

The tangent to the curve $y = 2x \tan x$ at the point where $x = \frac{\pi}{4}$ meets the y-axis at the point P.

- (ii) Find the y-coordinate of P in the form $k\pi^2$ where k is a rational constant. [6]
- **6.** (*i*) Find

$$\int \cot^2 2x \, dx.$$
 [3]

(ii) Use the substitution $u^2 = x + 1$ to evaluate

$$\int_0^3 \frac{x^2}{\sqrt{x+1}} \, \mathrm{d}x.$$
 [7]

7. During a chemical reaction, a compound is being made from two other substances.

At time t hours after the start of the reaction, x g of the compound has been produced. Assuming that x = 0 initially, and that

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 2(x-6)(x-3),$$

- (i) show that it takes approximately 7 minutes to produce 2 g of the compound. [10]
- (ii) Explain why it is not possible to produce 3 g of the compound. [2]

Turn over

8.

The diagram shows the curve with parametric equations

$$x = -1 + 4\cos\theta$$
, $y = 2\sqrt{2}\sin\theta$, $0 \le \theta < 2\pi$.

The point *P* on the curve has coordinates $(1, \sqrt{6})$.

- (i) Find the value of θ at P. [2]
- (ii) Show that the normal to the curve at *P* passes through the origin. [7]
- (iii) Find a cartesian equation for the curve. [3]