GCE Examinations Advanced Subsidiary

Core Mathematics C4

Paper F

Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator EXCEPT those with the facility for symbolic algebra, differentiation and/or integration.

Full marks may be obtained for answers to ALL questions.

Mathematical formulae and statistical tables are available.

This paper has seven questions.

Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working may gain no credit.

Written by Shaun Armstrong

© Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

	A curve has the equation	
	$2x^2 + xy - y^2 + 18 = 0.$	
	Find the coordinates of the points where the tangent to the curve is parallel to the <i>x</i> -axis.	(8)
_		

Use the substitution $x = 2 \tan u$ to show that	
$\int_0^2 \frac{x^2}{x^2 + 4} dx = \frac{1}{2}(4 - \pi).$	(8)

•	(a)	Show that $(1\frac{1}{24})^{-\frac{1}{2}} = k\sqrt{6}$, where k is rational.	(2)
	(b)	Expand $(1 + \frac{1}{2}x)^{-\frac{1}{2}}$, $ x < 2$, in ascending powers of x up to and including the term in x^3 , simplifying each coefficient.	(4)
	(c)	Use your answer to part (b) with $x = \frac{1}{12}$ to find an approximate value for	
		$\sqrt{6}$, giving your answer to 5 decimal places.	(3)

3. con	tinued	Leav blan

Leave blank

(5)

4. Relative to a fixed origin, two lines have the equations

$$\mathbf{r} = (7\mathbf{j} - 4\mathbf{k}) + s(4\mathbf{i} - 3\mathbf{j} + \mathbf{k}),$$

and

$$\mathbf{r} = (-7\mathbf{i} + \mathbf{j} + 8\mathbf{k}) + t(-3\mathbf{i} + 2\mathbf{k}),$$

where s and t are scalar parameters.

- (a) Show that the two lines intersect and find the position vector of the point where they meet.
- (b) Find, in degrees to 1 decimal place, the acute angle between the lines. (4)

4.	continued	Leave blank

Leave blank

5. A curve has parametric equations

$$x = \frac{t}{2-t}$$
, $y = \frac{1}{1+t}$, $-1 < t < 2$.

- (a) Show that $\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{2} \left(\frac{2-t}{1+t} \right)^2$. (4)
- (b) Find an equation for the normal to the curve at the point where t = 1. (3)
- (c) Show that the cartesian equation of the curve can be written in the form

$$y = \frac{1+x}{1+3x} \,. \tag{4}$$

•	continued	

Leave blank

- **6.** (a) Find $\int \tan^2 x \, dx$.
 - (b) Show that

$$\int \tan x \, dx = \ln \left| \sec x \right| + c,$$

where c is an arbitrary constant.

(4)

(3)

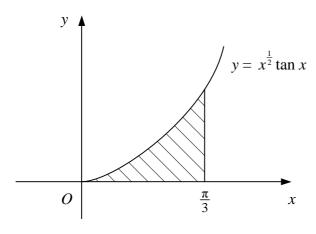


Figure 1

Figure 1 shows part of the curve with equation $y = x^{\frac{1}{2}} \tan x$.

The shaded region bounded by the curve, the *x*-axis and the line $x = \frac{\pi}{3}$ is rotated through 2π radians about the *x*-axis.

<i>(c)</i>	Show that the volume of the solid formed is $\frac{1}{18}\pi^2(6\sqrt{3} - \pi) - \pi \ln 2$.	(6)
------------	--	-----

		Lea
6.	continued	

Leave blank

(5)

7.

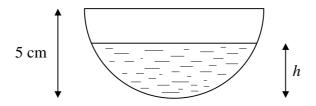


Figure 2

Figure 2 shows a hemispherical bowl of radius 5 cm.

The bowl is filled with water but the water leaks from a hole at the base of the bowl. At time t minutes, the depth of water is h cm and the volume of water in the bowl is $V \, \text{cm}^3$, where

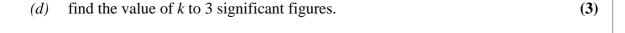
$$V = \frac{1}{3}\pi h^2 (15 - h).$$

In a model it is assumed that the rate at which the volume of water in the bowl decreases is proportional to V.

(a) Show that

$$\frac{\mathrm{d}h}{\mathrm{d}t} = -\frac{kh(15-h)}{3(10-h)},$$

where k is a positive constant.


(b) Express
$$\frac{3(10-h)}{h(15-h)}$$
 in partial fractions. (3)

Given that when t = 0, h = 5,

(c) show that

$$h^2(15-h) = 250 \,\mathrm{e}^{-kt}$$
. (6)

Given also that when t = 2, h = 4,

7.	continued	Leave blank
ŕ		

7. continu	ued	Leav
	END	