physicsandmathstutor.com

Mark Scheme 4724 June 2005

1	(Quotient =) $x^2 + 2x + 2$	B1 M1	For correct leading term x^2 in quotient For evidence of division/identity process
		A1	For correct quotient
	(Remainder =) $0x - 3$	A1 4	For correct remainder. The '0x' need
	Allow without working		not be written but must be clearly derived. 4
	/ without working		delived. 4
2		M1	For attempt at parts going correct way
			$(u = x, dv = \cos x \text{ and } f(x) +/-\int g(x) (dx)$
	$x \sin x - \int \sin x dx$	A1	For both terms correct
	$(= x \sin x + \cos x)$	B1	Indic anywhere that $\int \sin x dx = -\cos x$
	Answer = $\frac{1}{2}\pi - 1$	M1 A1 5	For correct method of limits For correct exact answer ISW 5
	Allswer = 72 II = 1	Λι 3	1 or correct exact answer
3	(i)	M1	For (either point) + t(diff betw vectors)
	$\mathbf{r} = (2\mathbf{i} - 3\mathbf{j} + \mathbf{k}) \cdot \mathbf{r} - 2\mathbf{j} - 4\mathbf{k} + \mathbf{t}(3\mathbf{i} - \mathbf{j} + 5\mathbf{k})$	A1 2 M1	Completely correct including r =. AEF
	(ii) $L(2)$ (r) = 3i+2j-9k+s(4i - 4j + 5k) L(1)&L(2) must be of form r = a + tb	IVII	For point + (s or t) direction vector
	2+3t=3+4s, -3-t=2-4s,1+5t= - 9+5s	M1	For 2/3 eqns with 2 different parameters
	or suitable equivalences		·
	(t,s) = (+/-3,2) or (-/+1,1) or (-/+9,-7)	M1	For solving any relevant pair of eqns
	or (+/-4,2) or (0,1) or (-/+8,-7) Basic check other eqn & interp $\sqrt{}$	A1 B1 5	For both parameters correct 7
	Basic check other equily interp v	D1 3	,
4	(i) $dx = \sec^2\theta d\theta$ AEF	M1	Attempt to connect dx , $d\theta$ (not $dx = d\theta$)
		A1	For $dx = \sec^2\theta \ d\theta$ or equiv correctly
	Indefinite integral = $\int \cos^2\theta \ d\theta$ (ii) = $k \int +/- 1 +/- \cos 2\theta \ d\theta$	A1 3 M1	used With at least one intermed step AG
	$\frac{1}{2}[\theta + \frac{1}{2}\sin 2\theta]$	A1	"Satis" attempt to change to double
	Limits = $\frac{1}{4}\pi$ (accept 45) and 0	M1	angle
	$(\pi + 2)/8$ AEF	A1 4	Correct attempt + correct integration
			New limits for θ or resubstituting
			Ignore decimals after correct answer
			Single 'parts' + sin²θ=1–cos²θ
			acceptable
5	(i)OD=OA+AD or OB+BC+CD AEF	M1	Connect OD & 2/3/4 vectors in their diag
	AD = BC or $CD = BA(a + c - b) = 2j + k$	A1 A1 3	Or similar ,from their diag [i.e.if diag mislabelled, M1A1A0
	(a · o · b) - 2j · K	^	possible]
	(ii) $AB.CB = AB CB \cos \theta$	M1	
	Scalar product of <u>any</u> 2 vectors	M1	Or AB.BC i.e.scalar prod for correct
	Magnitude of <u>any</u> vector	M1	pair
	94°(94.386) or 1.65 (1.647)	A1 4	$2+3-6=-1$ is expected $\sqrt{19}$ or 3 expected
			Accept 86°(85.614) or 1.49(424)
			7
6	(i) For d/dx (y^2) = $2y dy/dx$	B1	
	Using $d(uv) = u dv + v du$ $2xy dy/dx + y^2 = 2 + 3 dy/dx$	M1 A1	
	2 x y u y u x 1 y - 2 + 3 u y / u x	M1	Solving an equation,with at least 2 dy/dx
			terms, for dy/dx; dy/dx on one side, non
	1 / 1 / 2 2 / 2 2 / 2		dy/dx on other.
	$dy/dx = (2 - y^2)/(2xy - 3)$	A1 5	AG

	(ii) Stating/using $2xy - 3 = 0$ Attempt to eliminate x or y $8x^2 = -9$ or $y^2 = -2$	B1 M1 A1 3	No use of $2 - y^2$ in this part. Between $2xy - 3 = 0$ & eqn of curve Together with suitable finish 8
7	(i)dy/dx = (dy/dt) / (dx/dt) = $(-1/t^2)/2t$ as unsimplified expression = $-1/2t^3$ as simplified expression (ii) $(4,-1/2) \rightarrow t = -2$ only Satis attempt to find equation of tgt x - 16y = 12 only (iii) $t^3 - 12t - 16 = 0$ or $16y^3 + 12y^2 - 1 = 0$ or $x^3 - 24x^2 + 144x - 256 = 0$ t = 4 (only) ISW giving cartesian coords	M1 A1 A1 B1 M1 A1 3 M1 A1 B2 4	(S.R.Award M1 for attempt to change to cartesian eqn & differentiate + A1 for dy/dx or dx/dy in terms of x or y) Not $1/-2t^a$. Not in terms of x &/or y . Using $t = -2$ or 2 AG For substituting $(t^2, 1/t)$ into tgt eqn or solving simult tgt & their cartes eqns For simplified equiv non-fract cubic S.R. Award B1 for "4 or -2 ". S.R. If B0, award M1 for clear indic of method of soln of correct eqn. 10
8	(i) $3x+4 \equiv A(2+x)^2+B(2+x)(1+x) + C(1+x)$ A = 1 C = 2 A+B = 0 or $4A+3B+C=3$ or $4A+2B+C= 4B = -1(ii) 1-x+x^21-\frac{1}{2}x+\frac{1}{4}x^21-x+\frac{3}{4}x^21-5/4x+5/4x^2$	M1 A/B1 A/B1 A1 5 B1 B1 B1 5	Accept \equiv or $=$ If identity used, award 'A' mark, if cover-up rule used, award 'B' mark. Any correct eqn for B from identity Expansion of $(1 + x)^{-1}$ Expansion of $(1 + \frac{1}{2}x)^{-1}$ First 2 terms of $(1 + \frac{1}{2}x)^{-2}$ Third term of $(1 + \frac{1}{2}x)^{-2}$ Complete correct expansion If partial fractions not used Award B1 for expansion of $(1 + \frac{1}{2}x)^{-2}$, and B1 for $1-\frac{5}{4}x$ & B1 for+ $5\frac{4}{4}x^{2}$ Or if denom expanded to give $a+bx+cx^{2}$ with $a=4.b=8,c=5$, award B1 Expansion of $[1+(b/a)x+(c/a)x^{2}]^{-1} = 1-(b/a)x+(-c/a+b^{2}/a^{2})x^{2}$ B1+B1 Final ans $= (1-\frac{5}{4}x+\frac{5}{4}x^{2})$ B1+B1 Other inequalities to be discarded. 11
	(iii) – 1 < x < 1 AEF	D0 6	
9	k = const of proportionality - = falling, $d\theta/dt$ = rate of change $\theta - 20$ = diff betw obj & surround temp (ii) $\int 1/(\theta - 20) d\theta = -k \int dt$ $\ln(\theta - 20) = -kt + c$ Subst $(\theta, t) = (100, 0)$ or $(68, 5)$	M1 A1A1 M1 A1	All 4 items (first two may be linked) S.R. Award B1 for any 2 items For separating variables For integ each side (c not essential) Dep on 'c' being involved [or_M2 for limits (100,0) (68,5) + A1 for

4724 Mark Scheme June 2005

c = In 80	A1	k]
k = 1/5 ln 5/3	M1	
_(1 1, 5),	A1 8	AG
$\theta = 20 + 80e^{-\left(\frac{1}{5}\ln\frac{5}{3}\right)t}$		
	M1	Subst into AEF of given eqn & solve
(iii) Substitute $\theta = 68 - 32$	A1	Accept 15.7 or 15.8
<i>t</i> = 15.75	B1 3	f.t. only if θ = their (68 – 32) or 32 13
Extra time = 10.75, √their 15.75 – 5		