Version 1.0

General Certificate of Education (A-level) June 2013

Mathematics

MPC4

(Specification 6360)

Pure Core 4

Final

PMT

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
с	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

1(a)(i) $5-8x = A(1-3x) + B(2+x)$ x = -2 MI x = -3 MI h = 3 MI h = 3 MI h = 3 MI h = 3 Two values of x used to find values for A and B (ii) $\int_{-\frac{1}{2}+x}^{0} \frac{1}{1-3x} dx$ $= (3\ln 2 - \frac{1}{3}\ln 1) - (3\ln 1 - \frac{1}{3}\ln 4)$ $= (3\ln 2 + \frac{1}{3}\ln 4)$ $= (3\ln 2 + \frac{1}{3}\ln 4)$ MI $m = 3\ln 2 + \frac{1}{3}\ln 4$ MI $m = 3\ln 2 + \frac{1}{3}\ln 2$ MI $m = 3\ln 2 + \frac{1}{3}\ln 4$ MI $m = 3\ln$	0	Solution	Marks	Total	Comments
$\begin{array}{c c c c c c c c c c c c c c c c c c c $,	5-8x = A(1-3x) + B(2+x) x = -2 x = $\frac{1}{3}$	M1 m1		Two values of x used to find values
(ii)	(ii)	$= 3\ln(2+x) - \frac{1}{3}\ln(1-3x)$ = $(3\ln 2 - \frac{1}{3}\ln 1) - (3\ln 1 - \frac{1}{3}\ln 4)$ = $3\ln 2 + \frac{1}{3}\ln 4$	m1 A1ft	4	and b are constants f(0) - f(-1) used ft A and B
$\int \frac{9-18x-6x}{2-5x-3x^2} dx = \int Cdx + \int \frac{5-8x}{2-5x-3x^2} dx$ $\int_{-1}^{0} \frac{9-18x-6x^2}{2-5x-3x^2} dx = 2 + \frac{11}{3} \ln 2$ $A = 3 B = 1$ $M = M = M = M = M = M = M = M = M = M =$	(b)(i)	(<i>C</i> =)2	B1	1	
(a)(i) Alternative 5-8x = A(1-3x) + B(2+x) (M1) 5 = A + 2B (M1) -8 = -3A + B (M1) A = 3 $B = 1$ (A1) (3) 5 = A + 2B (M1)	(ii)		M1		-
5-8x = A(1-3x) + B(2+x) $5=A+2B$ $-8=-3A+B$ $A=3 B=1$ (M1) (M1) (M1) (M1) (M1) (M1) (M1) (M1)		$\int_{-1}^{0} \frac{9 - 18x - 6x^2}{2 - 5x - 3x^2} dx = 2 + \frac{11}{3} \ln 2$	A1ft	2	ft 2 + candidate's answer to part
-8 = -3A + B $A = 3 B = 1$ (M1) (M1) (M1) (M1) (M1) (M1) (M1) (M1)	(a)(i)		(M1)		
			(m1)		· · ·
		A = 3 B = 1 Total	(A1)	(3) 10	

Q	Solution	Marks	Total	Comments
-	$h^2 = 2^2 + \sqrt{5}^2 = 9 \Longrightarrow h = 3 \Longrightarrow \sin \alpha = \frac{2}{3}$	B1		Pythagoras used or all of $2\sqrt{5}$, 2 ocen correctly on triangle
	_			2, $\sqrt{5}$, 3 seen correctly on triangle AG
	$\cos\alpha = \frac{\sqrt{5}}{3}$	B1	2	$\frac{\sqrt{5}}{3}$ or $\sqrt{\frac{5}{9}}$ or $\frac{5}{3\sqrt{5}}$ seen
(ii)	$\sin 2\alpha = 2\sin \alpha \cos \alpha$	M1		Correct formula seen or implied
	$=\left(2\times\frac{2}{3}\times\frac{\sqrt{5}}{3}\right)=\frac{4}{9}\sqrt{5}$	A1	2	Must see $\frac{\sqrt{5}}{3}$ here or in part (a)(i)
				Accept $\frac{4}{3}\sqrt{\frac{5}{9}}$
(b)	$\cos\beta = \frac{2}{\sqrt{5}}$ or $\sin\beta = \frac{1}{\sqrt{5}}$	B1		Either correct. Accept $\sqrt{\frac{4}{5}}$, $\frac{\sqrt{5}}{5}$
	$\cos(\alpha-\beta)=\cos\alpha\cos\beta+\sin\alpha\sin\beta$	M1		Correct formula seen or implied.
	$=\frac{\sqrt{5}}{3}\times\frac{2}{\sqrt{5}}+\frac{2}{3}\times\frac{1}{\sqrt{5}}$	A1		All correct
	$=\frac{2}{15}\left(5+\sqrt{5}\right)$	A1	4	k = 5 with previous A mark awarded
(a)(i)	Alternative			
	$\csc^2 \alpha = 1 + \cot^2 \alpha = 1 + \frac{5}{4} = \frac{9}{4}$			
	$\csc \alpha = \frac{3}{2}$ $\sin \alpha = \frac{2}{3}$	(B1)		Must be positive
	$\sec^2 \alpha = 1 + \tan^2 \alpha = 1 + \frac{4}{5} = \frac{9}{5}$			
	$\sec \alpha = \frac{3}{\sqrt{5}}$ $\cos \alpha = \frac{\sqrt{5}}{3}$	(B1)		Must be posiitve
	Tota	1	8	

Q	Solution	Marks	Total	Comments
3(a)	$(1+6x)^{-\frac{1}{3}} = 1 + (-\frac{1}{3})6x + kx^2$	M1		
	$=1-2x+8x^2$	A1	2	
(b)(i)	$(27+6x)^{-\frac{1}{3}} = 27^{-\frac{1}{3}} (1+\frac{6}{27}x)^{-\frac{1}{3}}$	B1		Condone missing brackets and one
	$(27+6x)^{3} = 27^{3} \left(1 + \frac{6}{27}x\right)^{3}$ $\left(1 + \frac{6}{27}x\right)^{\frac{1}{3}} = 1 + \left(-\frac{1}{3} \times \frac{6}{27}x\right) + \left(-\frac{1}{3} \times -\frac{4}{3}\right) \frac{1}{2} \left(\frac{6}{27}x\right)^{2}$ $\left(27+6x\right)^{-\frac{1}{3}} = \frac{1}{3} - \frac{2}{81}x + \frac{8}{2187}x^{2}$	M1		error
	$(27+6x)^{-3} = \frac{1}{3} - \frac{2}{81}x + \frac{3}{2187}x^{2}$	A1	3	
(ii)	$\left(\sqrt[3]{\frac{2}{7}} = \frac{2}{\sqrt[3]{28}} \Longrightarrow 27 + 6x = 28 \Longrightarrow x = \frac{1}{6}\right)$			
	$\sqrt[3]{\frac{1}{28}} = \frac{1}{3} - \frac{2}{81} \times \frac{1}{6} + \frac{8}{2187} \times \left(\frac{1}{6}\right)^2 (\approx 0.3293)$	M1		Substitute $x = \frac{1}{6}$ into expansion
	$\left(\sqrt[3]{\frac{2}{7}} \approx 2 \times 0.3293197 = 0.6586394\right)$			from (b)(i)
	= 0.658639 (6dp)	A1	2	CSO
	Alternatives			
(b)(i)	$(27+6x)^{-\frac{1}{3}} = 27^{-\frac{1}{3}} (1+\frac{6}{27}x)^{-\frac{1}{3}}$	(B1)		Replace x with $\frac{1}{27}x$, not $\frac{6}{27}x$, in
	$(27+6x)^{-\frac{1}{3}} = 27^{-\frac{1}{3}} (1+\frac{6}{27}x)^{-\frac{1}{3}}$ $(1+\frac{6}{27}x)^{-\frac{1}{3}} = 1-2 \times \frac{1}{27}x + 8 \times (\frac{1}{27})^2 x^2$	(M1)		expansion from (a); condone missing brackets and one error
	$\left(27+6x\right)^{-\frac{1}{3}} = \frac{1}{3} - \frac{2}{81}x + \frac{8}{2187}x^2$	(A1)	(3)	inissing brackets and one entri
(b)(i)	$(27+6x)^{-\frac{1}{3}} = 27^{-\frac{1}{3}} + (-\frac{1}{3})27^{-\frac{4}{3}} \times 6x$	(M1)		Use result from formula book; Condone missing brackets and one
	$+(-\frac{1}{3})\times(-\frac{4}{3})\frac{1}{2}27^{\frac{7}{3}}\times(6x)^{2}$			error
	$\left(27+6x\right)^{-\frac{1}{3}} = \frac{1}{3} - \frac{2}{81}x + \frac{8}{2187}x^2$	(A2)	(3)	A1 not available
	Total		7	

MPC4- AQA GCE Mark Scheme 2013 June series

	Colution	Monles	Tatal	Commercia
Q 4(a)	<u>Solution</u>	Marks	Total	Comments
4(a)	$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right) - 16\mathrm{e}^{-2t} \qquad \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right) = 4\mathrm{e}^{2t}$	B1		Both derivatives correct
	$\frac{dy}{dx} = \frac{\text{candidate's } \frac{dy}{dt}}{\text{candidate's } \frac{dy}{dt}}$	M1		chain rule used correctly
	dx candidate's $\frac{dx}{dt}$			
	$\frac{dy}{dx} = \frac{4e^{2t}}{-16e^{-2t}} \left(=-\frac{1}{4}e^{4t}\right)$	A1	3	Simplification not required $4e^{2t}$ and $-16e^{-2t}$ must be seen. ISW.
(b) (i)	$t = \ln 2$ gradient at $P = -4$	B1ft	1	B0 if ISW result is used.
(ii)	coordinates of <i>P</i> $x = -2$	B1		
(iii)	y = 12	B1	2	
(11)	gradient of normal $=\frac{1}{4}$	B1ft		ft gradient at <i>P</i>
	equation of normal $\frac{y-12}{x-2} = \frac{1}{4}$	M1		Set up equation of normal
	at $y = 0$ $x = -50$	A1	3	(-50,0) CSO
(c)	$xy + 4y - 4x = (8e^{-2t} - 4)(2e^{2t} + 4)$			
	$+4(2e^{2t}+4)-4(8e^{-2t}-4)$	M1		Write $xy + 4y - 4x$ in terms of t.
	$= 16 + 32e^{-2t} - 8e^{2t} - 16$			Multiply out and simplify using
	$+8e^{2t}+16-32e^{-2t}+16$	m1		$e^{-2t}e^{2t} = 1 PI$
	(xy+4y-4x)=32	A1	3	Correct working to $k = 32$ k = 32 NMS; SC1
(c)	Alternative			
	$e^{-2t} = \frac{x+4}{8}$ or $e^{2t} = \frac{y-4}{2}$	(M1)		Write e^{-2t} in terms of x or e^{2t} in terms of y. Condone sign errors
	$e^{-2t}e^{2t} = \left(\frac{x+4}{8}\right)\left(\frac{y-4}{2}\right)$			
	$=\frac{xy+4y-4x-16}{16}=1$	(m1)		Multiply out and use $e^{-2t}e^{2t} = 1$
	xy + 4y - 4x = 32	(A1)	(3)	All correct with $k = 32$
	Other alternatives are possible			
	Total		12	

· · · · · · · · · · · · · · · · · · ·				
Q	Solution	Marks	Total	Comments
5(a)	$f\left(-\frac{3}{2}\right) = 4\left(-\frac{3}{2}\right)^3 - 11\left(-\frac{3}{2}\right) - 3$	M1		$x = -\frac{3}{2}$ substituted
	$= -4 \times \frac{27}{8} + \frac{33}{2} - 3 = 0 \Longrightarrow \text{factor}$	A1	2	Processing, $= 0$ and conclusion
(b)	$2x^2 - 3x - 1$	M1A1	2	M1 for any two of <i>a</i> , <i>b</i> , <i>c</i> correct
(c)(i)	$2\cos 2\theta \sin \theta + 9\sin \theta + 3$ $= 2(1 - 2\sin^2 \theta)\sin \theta + 9\sin \theta + 3$ $= 2\sin \theta - 4\sin^3 \theta + 9\sin \theta + 3$	M1 m1		$\cos 2\theta$ expanded ; ACF and substituted All in terms of $\sin \theta$ or x and
		Al	3	simplified to a cubic expression. Reverse signs and express in x
	$\sin \theta = x \Longrightarrow 4x^3 - 11x - 3 = 0$		5	correctly AG Use formula correctly to solve
(c)(ii)	$2x^2 - 3x - 1 = 0 \Longrightarrow x = \frac{3 \pm \sqrt{17}}{4}$ $3 - \sqrt{17}$	M1		$ax^2 + bx + c = 0$ from part (b)
	$x = \frac{3 - \sqrt{17}}{4}$ or -0.28	A1		
	$\theta = 196^{\circ}$ and 344° $x = \frac{3 + \sqrt{17}}{4}$ no solutions for $\sin \theta$	A1		Both required and no others in range; condone greater accuracy Ignore solutions out of range.
	$x = -\frac{3}{2}$ no solutions for $\sin \theta$	E1	4	Must have three correct roots and reject both other roots from cubic equation.
	Total		11	

Q	Solution	Marks	Total	Comments
6(a)	$\lambda = -1$ $\lambda = -1$ verified in all three components	B1 B1	2	$\lambda = -1$ seen or implied Shown
(b)	$\pm \begin{bmatrix} -2 \\ -3 \\ 2 \end{bmatrix}$	B1		\overrightarrow{AB} or \overrightarrow{BA} correct
	$\mathbf{r} = \overrightarrow{OA} + \mu \overrightarrow{AB} = \begin{bmatrix} 3\\-2\\4 \end{bmatrix} + \mu \begin{bmatrix} -2\\-3\\2 \end{bmatrix}$	M1 A1ft	3	$\mathbf{a} + \mu \mathbf{d}$ OE; ft on \overrightarrow{AB} or \overrightarrow{BA}
(c)	$\overrightarrow{CD} = \overrightarrow{OD} - \overrightarrow{OC}$ $= \begin{bmatrix} 3 - 2\mu \\ -2 - 3\mu \\ 4 + 2\mu \end{bmatrix} - \begin{bmatrix} -4 \\ 5 \\ -1 \end{bmatrix} \left(= \begin{bmatrix} 7 - 2\mu \\ -7 - 3\mu \\ 5 + 2\mu \end{bmatrix} \right)$	B1		$\pm \overrightarrow{CD}$ in terms of μ OE
	$\overrightarrow{CD} \cdot \overrightarrow{AB} = 0 \text{ or } \overrightarrow{CD} \cdot \overrightarrow{AD} = 0$ $= \left(\begin{bmatrix} 3 - 2\mu \\ -2 - 3\mu \\ 4 + 2\mu \end{bmatrix} - \begin{bmatrix} -4 \\ 5 \\ -1 \end{bmatrix} \right) \cdot \begin{bmatrix} -2 \\ -3 \\ 2 \end{bmatrix} = 0$ $-14 + 4\mu + 21 + 9\mu + 10 + 4\mu = 0$	M1		Candidate's \overrightarrow{CD} sp with candidate's \overrightarrow{AB} or \overrightarrow{AD} = 0 PI by a solution for μ
	$17 + 17 \mu = 0$ $\mu = -1$ D is at (5,1,2)	m1A1 A1	5	Expand sp to an equation in μ and solve for μ Accept as a column vector
(d)	$\overrightarrow{OE} = \overrightarrow{OA} + \overrightarrow{AE} = \overrightarrow{OA} + 3\overrightarrow{AD}$	M1	5	Accept $AE = 3AD$
	$\overrightarrow{OE} = \begin{bmatrix} 3\\-2\\4 \end{bmatrix} + 3 \begin{bmatrix} 2\\3\\-2 \end{bmatrix} \qquad E \text{ is at } (9,7,-2)$	A1		Accept as a column vector
	Or $\overrightarrow{OE} = \overrightarrow{OA} + \overrightarrow{AE} = \overrightarrow{OA} + 3\overrightarrow{DA}$	M1		Accept $AE = 3DA$
	$\overrightarrow{OE} = \begin{bmatrix} 3\\-2\\4 \end{bmatrix} + 3 \begin{bmatrix} -2\\-3\\2 \end{bmatrix} \qquad E \text{ is at } (-3, -11, 10)$	A1	4	Accept as a column vector.

0	Solution	Marks	Total	Comments
X	Alternative using Pythagoras	1,141115	1000	Comments
6(c)	$\overrightarrow{CD} = \overrightarrow{OD} - \mu \overrightarrow{OC}$			
	$= \begin{bmatrix} 3-2\mu\\-2-3\mu\\4+2\mu \end{bmatrix} - \begin{bmatrix} -4\\5\\-1 \end{bmatrix} \left(= \begin{bmatrix} 7-2\mu\\-7-3\mu\\5+2\mu \end{bmatrix} \right)$ $AC^{2} = AD^{2} + CD^{2}$	(B1)		$\pm \overrightarrow{CD} \text{ in terms of } \mu$ $\overrightarrow{AC} = \begin{bmatrix} -7\\7\\-5 \end{bmatrix} \qquad \overrightarrow{AD} = \begin{bmatrix} -2\mu\\-3\mu\\2\mu \end{bmatrix}$
	$(7^{2} + 7^{2} + 5^{2}) = \mu^{2} (2^{2} + 3^{2} + 2^{2}) + ((7 - 2\mu)^{2} + (7 + 3\mu)^{2} + (5 + 2\mu)^{2})$	(M1)		$\begin{bmatrix} -5 \end{bmatrix} \begin{bmatrix} 2\mu \end{bmatrix}$ Correct Pythagoras expression in terms of μ ;
	$123 = 17\mu^{2} + 123 + 34\mu + 17\mu^{2}$ 0 = 34\mu^{2} + 34\mu	(m1)		Multiply out and solve to find a value for μ
	$\mu = -1$ ($\mu = 0$ is point A)	(A1)		$\mu = -1$
	D is at (5,1,2)	(A1)	(5)	$\mu = 1$
	D is at $(5,1,2)$	(111)	(3)	
6(d)	Alternative $\left \overrightarrow{DE}\right = 2\left \overrightarrow{AD}\right \Rightarrow \overrightarrow{OE} = \overrightarrow{OD} + 2\overrightarrow{AD}$	(M1)		
	$\overrightarrow{OE} = \begin{bmatrix} 5\\1\\2 \end{bmatrix} + 2\begin{bmatrix} 2\\3\\-2 \end{bmatrix} \qquad E \text{ is at } (9,7,-2)$	(A1)		
	$ DE = 4 DA \Longrightarrow \overrightarrow{OE} = \overrightarrow{OD} + 4\overrightarrow{DA}$	(M1)		
	$\overrightarrow{OE} = \begin{bmatrix} 5\\1\\2 \end{bmatrix} + 4 \begin{bmatrix} -2\\-3\\2 \end{bmatrix} \qquad E \text{ is at } (-3, -11, 10)$	(A1)	(4)	
	Total		14	

Q	Solution	Marks	Total	Comments
7	$\frac{\mathrm{d}h}{\mathrm{d}t}$	B1	1	$\frac{\mathrm{d}h}{\mathrm{d}t}$ seen
	a = 1.3 or $a = -1.3$	B1	1	u
	$k = \frac{\pi}{6} \text{or} k = \frac{2\pi}{12}$	B1	1	
	Total		3	
8	$\int t \cos\left(\frac{\pi}{4}t\right) dt$			Clear attempt to use parts
(a)	$\int I \cos\left(\frac{-i}{4}\right) di$	M1		$u = t$ $\frac{\mathrm{d}v}{\mathrm{d}t} = \cos\left(\frac{\pi}{4}t\right)$
		IVII		$\frac{\mathrm{d}u}{\mathrm{d}t} = 1 \qquad v = k \sin\left(\frac{\pi}{4}t\right)$
	$= t \times \frac{4}{\pi} \sin\left(\frac{\pi}{4}t\right) - \frac{4}{\pi} \int \sin\left(\frac{\pi}{4}t\right) \left(dt\right)$	A1		Must be in terms of π
	$= pt\sin\left(\frac{\pi}{4}t\right) + q\cos\left(\frac{\pi}{4}t\right)$	m1		Correct form, any non-zero values for p , q
	$= t \times \frac{4}{\pi} \sin\left(\frac{\pi}{4}t\right) + \frac{4}{\pi} \times \frac{4}{\pi} \cos\left(\frac{\pi}{4}t\right)$	A1	4	Any correct unsimplified form. Constant not required
(b)	$\int 32x \mathrm{d}x = \int t \cos\left(\frac{\pi}{4}t\right) \mathrm{d}t$	B1		Correct separation and notation.
	$16x^2 =$	B1		$\frac{x^2}{2}$ if 32 not brought over; allow $32 \times \frac{x^2}{2}$
	$t \times \frac{4}{\pi} \sin\left(\frac{\pi}{4}t\right) + \frac{16}{\pi^2} \cos\left(\frac{\pi}{4}t\right) + C$	M1		Equate to result from part (a) with constant and use $(0,4)$ to find a
	$C = 256 - \frac{16}{\pi^2}$ $t = 45$	A1		value for the constant Accept $C = 254$ or better (254.37886)
	1 = 43 $16x^2 = -40.514 1.146 + 254.378$			Substitute $t = 45$ into
	10x = -40.514 1.146 + 254.378 = 212.718			$kx^{2} = pt\sin\left(\frac{\pi}{4}t\right) + q\cos\left(\frac{\pi}{4}t\right) + C$
	$x^2 = 13.294$			
	x = 3.646 = 3.65 m	m1A1	6	$p \neq 0$, $q \neq 0$ and calculate x.
	or (height =) 365 cm	IIIIAI	U	CSO
	Tatal		10	
	Total TOTAL		<u>10</u> 75	