Mathematics

Unit Pure Core 4

Tuesday 15 June 20109.00 am to 10.30 am

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

1 (a) The polynomial $\mathrm{f}(x)$ is defined by $\mathrm{f}(x)=8 x^{3}+6 x^{2}-14 x-1$.
Find the remainder when $\mathrm{f}(x)$ is divided by $(4 x-1)$.
(b) The polynomial $\mathrm{g}(x)$ is defined by $\mathrm{g}(x)=8 x^{3}+6 x^{2}-14 x+d$.
(i) Given that $(4 x-1)$ is a factor of $\mathrm{g}(x)$, find the value of the constant d. (2 marks)
(ii) Given that $\mathrm{g}(x)=(4 x-1)\left(a x^{2}+b x+c\right)$, find the values of the integers a, b and c.

2 A curve is defined by the parametric equations

$$
x=1-3 t, \quad y=1+2 t^{3}
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t.
(b) Find an equation of the normal to the curve at the point where $t=1$.
(c) Find a cartesian equation of the curve.

3 (a) (i) Express $\frac{7 x-3}{(x+1)(3 x-2)}$ in the form $\frac{A}{x+1}+\frac{B}{3 x-2}$.
(ii) Hence find $\int \frac{7 x-3}{(x+1)(3 x-2)} \mathrm{d} x$.
(b) Express $\frac{6 x^{2}+x+2}{2 x^{2}-x+1}$ in the form $P+\frac{Q x+R}{2 x^{2}-x+1}$.

4 (a) (i) Find the binomial expansion of $(1+x)^{\frac{3}{2}}$ up to and including the term in x^{2}.
(2 marks)
(ii) Find the binomial expansion of $(16+9 x)^{\frac{3}{2}}$ up to and including the term in x^{2}.
(3 marks)
(b) Use your answer to part (a)(ii) to show that $13^{\frac{3}{2}} \approx 46+\frac{a}{b}$, stating the values of the integers a and b.
(2 marks)

5 (a) (i) Show that the equation $3 \cos 2 x+2 \sin x+1=0$ can be written in the form

$$
\begin{equation*}
3 \sin ^{2} x-\sin x-2=0 \tag{3marks}
\end{equation*}
$$

(ii) Hence, given that $3 \cos 2 x+2 \sin x+1=0$, find the possible values of $\sin x$.
(b) (i) Express $3 \cos 2 x+2 \sin 2 x$ in the form $R \cos (2 x-\alpha)$, where $R>0$ and $0^{\circ}<\alpha<90^{\circ}$, giving α to the nearest 0.1°.
(ii) Hence solve the equation

$$
3 \cos 2 x+2 \sin 2 x+1=0
$$

for all solutions in the interval $0^{\circ}<x<180^{\circ}$, giving x to the nearest 0.1°.
$6 \quad$ A curve has equation $x^{3} y+\cos (\pi y)=7$.
(a) Find the exact value of the x-coordinate at the point on the curve where $y=1$.
(2 marks)
(b) Find the gradient of the curve at the point where $y=1$.
$7 \quad$ The point A has coordinates $(4,-3,2)$.
The line l_{1} passes through A and has equation $\mathbf{r}=\left[\begin{array}{r}4 \\ -3 \\ 2\end{array}\right]+\lambda\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$.
The line l_{2} has equation $\mathbf{r}=\left[\begin{array}{r}-1 \\ 3 \\ 4\end{array}\right]+\mu\left[\begin{array}{r}1 \\ -2 \\ -1\end{array}\right]$.
The point B lies on l_{2} where $\mu=2$.
(a) Find the vector $\overrightarrow{A B}$.
(b) (i) Show that the lines l_{1} and l_{2} intersect.
(ii) The lines l_{1} and l_{2} intersect at the point P. Find the coordinates of P.
(c) The point C lies on a line which is parallel to l_{1} and which passes through the point B. The points A, B, C and P are the vertices of a parallelogram.

Find the coordinates of the two possible positions of the point C.

8 (a) Solve the differential equation

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=-\frac{1}{5}(x+1)^{\frac{1}{2}}
$$

given that $x=80$ when $t=0$. Give your answer in the form $x=\mathrm{f}(t)$. (6 marks)
(b) A fungus is spreading on the surface of a wall. The proportion of the wall that is unaffected after time t hours is $x \%$. The rate of change of x is modelled by the differential equation

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=-\frac{1}{5}(x+1)^{\frac{1}{2}}
$$

At $t=0$, the proportion of the wall that is unaffected is 80%. Find the proportion of the wall that will still be unaffected after 60 hours.
(2 marks)
(c) A biologist proposes an alternative model for the rate at which the fungus is spreading on the wall. The total surface area of the wall is $9 \mathrm{~m}^{2}$. The surface area that is affected at time t hours is $A \mathrm{~m}^{2}$. The biologist proposes that the rate of change of A is proportional to the product of the surface area that is affected and the surface area that is unaffected.
(i) Write down a differential equation for this model.
(You are not required to solve your differential equation.)
(ii) A solution of the differential equation for this model is given by

$$
A=\frac{9}{1+4 \mathrm{e}^{-0.09 t}}
$$

Find the time taken for 50% of the area of the wall to be affected. Give your answer in hours to three significant figures.

END OF QUESTIONS

