C3 > NUMERICAL METHODS

Answers - Worksheet C

1 **a** let $f(x) = x^3 - 7x - 11$

$$f(3) = -5$$

$$f(4) = 25$$

sign change, f(x) continuous \therefore root

b $x_1 = 3.230712$

$$x_2 = 3.225651$$

$$x_3 = 3.226479 = 3.23 \text{ (2dp)}$$

- 4
- **a** f(4) = -2.29 (3sf)

$$f(5) = 0.829 (3sf)$$

- **b** sign change, f(x) continuous : root
- **c** $4 \csc x 5 + 2x = 0$

$$2x = 5 - 4 \operatorname{cosec} x$$

$$x = 2.5 - \frac{2}{\sin x}$$
, $a = 2.5$, $b = -2$

d $x_1 = 4.545973$

$$x_2 = 4.528018$$

$$\bar{x}_3 = 4.534481 = 4.534 \text{ (3dp)}$$

3 **a** f(0.4) = -0.809

f(0.5) = 0.307

sign change, f(x) continuous \therefore root

 $\therefore 0.4 < \alpha < 0.5$

b $x_1 = 0.468857$

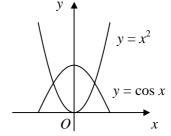
 $x_2 = 0.463841$

 $x_3 = 0.465157$

 $x_4 = 0.464810$

 $\therefore \alpha = 0.465 \text{ (3dp)}$

4



b $\cos x - x^2 = 0 \implies \cos x = x^2$

the graphs $y = \cos x$ and $y = x^2$ intersect at 2 points, one for x < 0 and one for x > 0

.. one negative and one positive real root

c let $f(x) = \cos x - x^2$

f(0.8) = 0.0567

f(0.9) = -0.188

sign change, f(x) continuous \therefore root

d $x_1 = 0.834690$

 $x_2 = 0.819395$

 $x_3 = 0.826235$

 $x_4 = 0.823195$

 $x_5 = 0.824550$

: root = 0.82 (2dp)

5 **a** f(1.4) = 3.65

$$f(1.5) = -0.205$$

sign change, f(x) continuous \therefore root

$$\mathbf{b} \quad \mathbf{e}^{5-2x} - x^5 = 0 \quad \Rightarrow \quad x^5 = \mathbf{e}^{5-2x}$$

$$\Rightarrow \quad x = (\mathbf{e}^{5-2x})^{\frac{1}{5}}$$

$$\Rightarrow \quad x = \mathbf{e}^{1-\frac{2}{5}x}, \ k = \frac{2}{5}$$

c $x_1 = 1.491825$

$$x_2 = 1.496711$$

$$x_3 = 1.493789 = 1.494 \text{ (3dp)}$$

6 **a** f(1.3) = -0.341

$$f(1.4) = 0.383$$

sign change, f(x) continuous \therefore root

b $x_1 = 1.331571$

$$x_2 = 1.354168$$

 $x_3 = 1.346907$

 $x_4 = 1.349261$

- **c** 1.35 (3sf)
- **d** diverges leading to ln of a –ve which is not real

C3 NUMERICAL METHODS

Answers - Worksheet C page 2

7 **a** $f'(x) = 6x^2 + 4$

b for all real x, $x^2 \ge 0$ $\Rightarrow 6x^2 + 4 > 0$

 \therefore f(x) increasing for all x

 \therefore y = f(x) only crosses x-axis once so exactly 1 real root

 \mathbf{c} f(1.2) = -0.744

f(1.3) = 0.594

sign change, f(x) continuous \therefore root

d $x_1 = 1.280579$

 $x_2 = 1.246945$

 $x_3 = 1.261203$

 $x_4 = 1.255199$

 $\therefore \text{ root} = 1.26 \text{ (2dp)}$

e f(1.255) = -0.0267

f(1.265) = 0.109

sign change, f(x) continuous \therefore root

8

a $3x + \ln x - x^2 = x \implies \ln x = x^2 - 2x$ $\implies x = e^{x^2 - 2x}$

b let $f(x) = 2x + \ln x - x^2$

f(0.4) = -0.276

f(0.5) = 0.0569

sign change, f(x) continuous \therefore root

 \mathbf{c} f(2.3) = 0.143

f(2.4) = -0.0845

sign change, f(x) continuous \therefore root

d $x_1 = 0.472367$

 $x_2 = 0.485973$

 $x_3 = 0.479134$

 $x_4 = 0.482537$

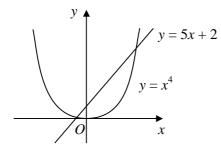
 \therefore x-coord of A = 0.48 (2dp)

e f(0.475) = -0.0201

f(0.485) = 0.0112

sign change, f(x) continuous \therefore root

9 a



b $x^4 - 5x - 2 = 0 \implies x^4 = 5x + 2$

the graphs $y = x^4$ and y = 5x + 2 intersect at 2 points, one for x < 0 and one for x > 0

: one negative and one positive real root

c $x_1 = 1.821160$

 $x_2 = 1.825524$

 $x_3 = 1.826420$

 $x_4 = 1.826603 = 1.827 \text{ (3dp)}$

d $x^4 - 5x - 2 = 0 \implies x^4 - 5x = 2$

$$\Rightarrow x(x^3 - 5) = 2$$

$$\Rightarrow x = \frac{2}{x^3 - 5}, \ a = 2, b = -5$$

e $x_1 = -0.394945$

 $x_2 = -0.395132$

 $x_3 = -0.395125$

:. root = -0.3951 (4dp)