NUMERICAL METHODS

PMT

1 Show in each case that there is a root of the equation f(x) = 0 in the given interval.

- **a** $f(x) = x^3 + 3x 7$ (1, 2) **b** $f(x) = 5 \cos x - 3x$ (0.5, 1) **c** $f(x) = 2e^x + x + 5$ (-6, -5) **d** $f(x) = x^4 - 5x^2 + 1$ (2.1, 2.2)
- **e** $f(x) = \ln (4x 1) + x^2$ (0.4, 0.5) **f** $f(x) = e^{-x} 9\cos 4x$ (10, 11)
- 2 Given that $|N| \le 5$, find in each case the integer N such that there is a root of the equation f(x) = 0 in the interval (N, N + 1).
 - **a** $f(x) = x^3 3\sqrt{x} 4$ **b** $f(x) = x \ln x - \frac{12}{x}$ **c** $f(x) = 2x^5 + 4x + 15$ **d** $f(x) = e^{x-1} + 4x - 2$ **e** $f(x) = e^x - 3\sin x$ **f** $f(x) = \tan(0.1x) + x - 6$
- 3 Show in each case that there is a root of the given equation in the given interval.
 - **a** $x^3 = 12 \frac{x}{4}$ [2, 3]**b** $12e^x = 9 4x$ [-1, 0]**c** $10 \ln 3x = 5 7x^2$ [0.47, 0.48]**d** $\sin 4x = 7e^x$ [-6.5, -6]**e** $4^x = 3x + 10$ [-4, -3]**f** $\tan(\frac{1}{2}x) = 2x 1$ [2.6, 2.7]

4 In each case there is a root of the equation f(x) = 0 in the given interval. Find the integer, *a*, such that this root lies in the interval $(\frac{a}{10}, \frac{a+1}{10})$.

- **a** $f(x) = x^4 + \frac{3}{x} 5$ (1, 2) **b** $f(x) = x \ln(6 + x^2)$ (2, 3)
- **c** $f(x) = 5x^3 3x^2 + 11$ (-2, -1) **d** $f(x) = \frac{8}{x} \cos x$ (11, 12)
- **e** $f(x) = \csc x + \sqrt{x}$ (5, 6) **f** $f(x) = x^2 7e^{2x+5}$ (-3, -2)

5 a On the same set of axes, sketch the graphs of $y = x^3$ and y = 4 - x.

- **b** Hence, show that the equation $x^3 + x 4 = 0$ has exactly one real root.
- **c** Show that this root lies in the interval (1, 1.5).

6

7

C3

- $\mathbf{f}: x \to x \ln x 1, \ x \in \mathbb{R}, \ x > 0.$
- **a** On the same set of axes, sketch the curves $y = \ln x$ and $y = \frac{1}{x}$.

b Hence show that the equation f(x) = 0 has exactly one real root.

The real root of f(x) = 0 is α .

- **c** Find the integer *n* such that $n < \alpha < n + 1$.
- **a** On the same set of axes, sketch the curves $y = e^x$ and $y = 5 x^2$.
 - **b** Hence show that the equation $e^x + x^2 5 = 0$ has exactly one negative and one positive real root.
 - **c** Show that the negative root lies in the interval (-3, -2).

The positive root, α , is such that $\frac{n}{10} < \alpha < \frac{n+1}{10}$, where *n* is an integer.

d Find the value of *n*.