NUMERICAL METHODS C3

a f(1) = -3 f(2) = 71 sign change, f(x) continuous \therefore root **c** f(-6) = -0.995 f(-5) = 0.0135sign change, f(x) continuous \therefore root e f(0.4) = -0.351 f(0.5) = 0.25sign change, f(x) continuous \therefore root 2 **a** f(0) =f(3) =f(1) =f(2) = $\therefore N =$ **d** f(0) =f(1) = $\therefore N =$ 3 **c** let $f(x) = 10 \ln 3x - 5 + 7x^2$ **e** let $f(x) = 4^x - 3x - 10$ f(-4) = 2.00 f(-3) = -0.984**a** f(1) = -14 f(2) = 12.5f(1.1) = -0.809f(1.2) = -0.426f(1.3) = 0.164∴ *a* = 12 **c** f(-2) = -41f(-1) = 3f(-1.1) = 0.715f(-1.2) = -1.96 $\therefore a = -12$ e f(5) = 1.19f(6) = -1.13f(5.5) = 0.928f(5.8) = 0.256f(5.9) = -0.246∴ *a* = 58

© Solomon Press

$$f(0.5) = 2.89$$
 $f(1) = -0.298$
sign change, $f(x)$ continuous ∴ root

- **d** f(2.1) = -1.60 f(2.2) = 0.226sign change, f(x) continuous \therefore root
- **f** f(10) = 6.00 f(11) = -9.00sign change, f(x) continuous \therefore root

: - 4	b	f(1) = -12	с	f(0) = 15
17.8		f(5) = 5.65		f(-2) = -57
-6		f(3) = -0.704		f(-1) = 9
-0.243		f(4) = 2.55		$\therefore N = -2$
= 2		$\therefore N = 3$		
-1.63	e	f(0) = 1	f	f(0) = -6
3		f(-5) = -2.87		f(4) = -1.58
= 0		f(-4) = -2.25		f(5) = -0.454
		f(-3) = 0.473		f(6) = 0.684
		$\therefore N = -4$		$\therefore N = 5$

b

a let
$$f(x) = x^3 - 12 + \frac{x}{4}$$

f(2) = -3.5 f(3) = 15.75
sign change, f(x) continuous ∴ root

- f(0.47) = -0.0178 f(0.48) = 0.259sign change, f(x) continuous \therefore root
- sign change, f(x) continuous \therefore root

b let $f(x) = 12e^x - 9 + 4x$

f(-1) = -8.59 f(0) = 3sign change, f(x) continuous \therefore root

- **d** let $f(x) = \sin 4x 7e^x$ f(-6.5) = -0.773 f(-6) = 0.888sign change, f(x) continuous \therefore root
- **f** let $f(x) = \tan(\frac{1}{2}x) 2x + 1$ f(2.6) = -0.598 f(2.7) = 0.0552sign change, f(x) continuous \therefore root
- **b** f(2) = -0.303f(3) = 0.292f(2.5) = -0.00553f(2.6) = 0.0537∴ *a* = 25
- **d** f(11) = 0.723f(12) = -0.177f(11.7) = 0.0362f(11.8) = -0.0425 $\therefore a = 117$
- **f** f(-3) = 6.42f(-2) = -15.0f(-2.7) = 2.60f(-2.6) = 1.03f(-2.5) = -0.75∴ *a* = −26

Answers - Worksheet A

page 2

C3 NUMERICAL METHODS

b $x^3 + x - 4 = 0 \implies x^3 = 4 - x$ the graphs $y = x^3$ and y = 4 - x

intersect at exactly one point

... one real root **c** let $f(x) = x^3 + x - 4$ f(1) = -2 f(1.5) = 0.875sign change, f(x) continuous \therefore root

Answers - Worksheet A

b $x \ln x - 1 = 0 \implies x \ln x = 1 \implies \ln x = \frac{1}{x}$

the graphs $y = \ln x$ and $y = \frac{1}{x}$

intersect at exactly one point ∴ one real root

c f(1) = -1f(2) = 0.386 ∴ 1 < α < 2 ∴ n = 1

6

5

- **b** $e^x + x^2 5 = 0 \implies e^x = 5 x^2$ the graphs $y = e^x$ and $y = 5 - x^2$ intersect at two points, one for x < 0 and one for x > 0 \therefore one negative and one positive real root
- c let $f(x) = e^x + x^2 5$ f(-3) = 4.05 f(-2) = -0.865 sign change, f(x) continuous ∴ root
- **d** f(1) = -1.28 f(2) = 6.39 f(1.2) = -0.240 f(1.3) = 0.359∴ $1.2 < \alpha < 1.3$ ∴ n = 12