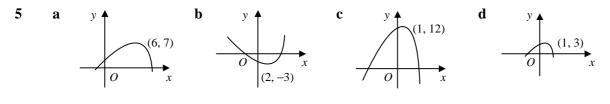
C3 \rangle Functions

Note: For this worksheet especially, there may be alternative correct answers


- **a** translated 3 units in negative *x*-direction and translated 2 units in positive *y*-direction
 - **b** reflected in the *y*-axis and stretched by a factor of 2 in *y*-direction
 - c translated 1 unit in positive x-direction and stretched by a factor of 3 in y-direction
 - d reflected in the x-axis and then translated 4 units in positive y-direction

2 a =
$$(x+3)^2 - 9 + 2 = (x+3)^2 - 7$$

b translation by 3 units in negative x-direction and translation by 7 units in negative y-direction

3 **a**
$$y = 2[2(x-3)+7] \implies y = 4x+2$$

b $y = 2[3e^{(x-3)}] \implies y = 6e^{x-3}$
c $y = 2[(x-3)^2 - 3(x-3) + 1] \implies y = 2x^2 - 18x + 38$
d $y = 2[\frac{1}{(x-3)}] \implies y = \frac{2}{x-3}$

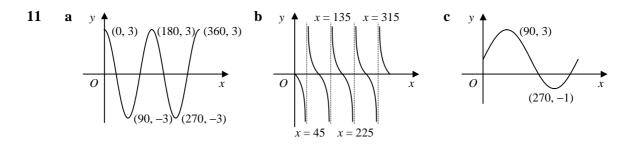
- **4 a** stretch by a factor of $\frac{1}{3}$ in x-direction and reflection in the x-axis (either first)
 - **b** reflection in the *y*-axis and translation by 5 units in positive *y*-direction (either first)
 - **c** translation by 4 units in negative *x*-direction and stretch by a factor of 3 in *y*-direction (either first)
 - **d** stretch by a factor of 3 in *y*-direction, then translation by 2 units in positive *y*-direction

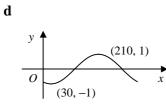
6 first \Rightarrow $y = (x+2)^2 + 4(x+2) - 2 \Rightarrow$ $y = x^2 + 8x + 10$ second \Rightarrow $y = 3[x^2 + 8x + 10] \Rightarrow$ $y = 3x^2 + 24x + 30$ third \Rightarrow $y = 3(-x)^2 + 24(-x) + 30 \Rightarrow$ $y = 3x^2 - 24x + 30$

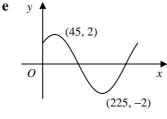
7 **a** = 2[
$$x^2 - 2x$$
] + 7 = 2[($x - 1$)² - 1] + 7 = 2($x - 1$)² + 5

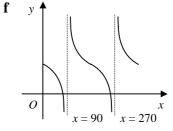
- **b** translation by 5 units in negative *y*-direction, then stretch by a factor of $\frac{1}{2}$ in *y*-direction, then translation by 1 unit in negative *x*-direction
- 8 a $f'(x) = 3x^2 6x$ SP: $3x^2 - 6x = 0$ 3x(x-2) = 0 x = 0, 2 $\therefore (0, 4)$ and (2, 0) b i (0, -8) and (2, 0) ii (0, 7) and (4, 3) iii (2, 1) and (4, 0)

C3 FUNCTIONS

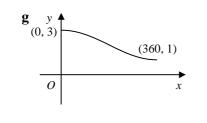

b

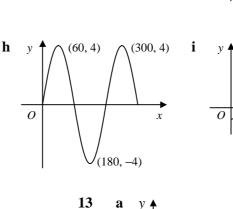

- **9 a** stretch by factor of 3 in *y*-direction, then reflection in *x*-axis, then translation by 2 units in +ve *y*-dir'n
 - (0, 2) $(\frac{4}{9}, 0)$ x


- **a** 180°
- **b** (0, 1)


10

c (90, 3) and (270, 3)




 $|_{(0,-1)}$

(180, 3)

(360, -1)

x

- 14 **a** max. value $4 \therefore a = 4$ max. occurs at $x = 45 \therefore b = 2$
 - **b** (135, -4)

b
$$(\pi, 2)$$

c $2 \sin \frac{1}{2}x = \sqrt{2}$

$$\sin \frac{1}{2}x = \frac{1}{\sqrt{2}}$$
$$\frac{1}{2}x = \frac{\pi}{4}, \pi - \frac{\pi}{4}$$
$$= \frac{\pi}{4}, \frac{3\pi}{4}$$
$$x = \frac{\pi}{2}, \frac{3\pi}{2}$$