DIFFERENTIATION

C3

(2)

1	Find an equation for the tangent to the curve with equation	
	$y = (3-x)^{\frac{3}{2}}$	
	at the point on the curve with x-coordinate -1 .	(4)
2	 a Sketch the curve with equation y = 3 - ln 2x. b Find the exact coordinates of the point where the curve crosses the x-axis. 	(2) (2)
	c Find an equation for the tangent to the curve at the point on the curve where $x = 5$. This tangent cuts the <i>x</i> -axis at <i>A</i> and the <i>y</i> -axis at <i>B</i> .	(4)
	d Show that the area of triangle <i>OAB</i> , where <i>O</i> is the origin, is approximately 7.20	(3)
3	Differentiate with respect to x	
	a $(3x-1)^4$,	(2)
	b $\frac{x^2}{\sin 2x}$.	(3)
4	The area of the surface of a boulder covered by lichen, $A \text{ cm}^2$, at time <i>t</i> years after initial observation, is modelled by the formula $A = 2e^{0.5t}.$	
	Using this model,	
	a find the area of lichen on the boulder after three years,	(2)
	b find the rate at which the area of lichen is increasing per day after three years,	(4)
	c find, to the nearest year, how long it takes until the area of lichen is 65 cm^2 .	(2)
	d Explain why the model cannot be valid for large values of <i>t</i> .	(1)
5	$y = a \ln x - 4x$	
	The diagram shows the curve with equation $y = a \ln x - 4x$, where <i>a</i> is a positive constant.	
	Find, in terms of <i>a</i> ,	
	a the coordinates of the stationary point on the curve,	(4)
	b an equation for the tangent to the curve at the point where $x = 1$.	(3)
	Given that this tangent meets the x-axis at the point $(3, 0)$,	
	c show that $a = 6$.	(2)
6	Given that $y = e^{2x} \sin x$,	

a find $\frac{dy}{dx}$,

b show that
$$\frac{d^2 y}{dx^2} - 4\frac{dy}{dx} + 5y = 0.$$
 (3)

© Solomon Press

Worksheet J continued

(2)

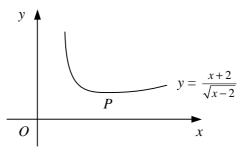
C3 DIFFERENTIATION

7 A curve has the equation $x = \tan^2 y$.

a Show that
$$\frac{dy}{dx} = \frac{1}{2\sqrt{x(x+1)}}$$
. (5)

b Find an equation for the normal to the curve at the point where $y = \frac{\pi}{4}$. (3)

8



The diagram shows the curve $y = \frac{x+2}{\sqrt{x-2}}$, x > 2, which has a minimum point at *P*.

- **a** Find and simplify an expression for $\frac{dy}{dx}$. (3)
- **b** Find the coordinates of *P*. (2)

The point Q on the curve has x-coordinate 3.

c Show that the normal to the curve at Q has equation

$$2x - 3y + 9 = 0. (3)$$

9 A curve has the equation $y = e^{x}(x-1)^{2}$.

a Find
$$\frac{dy}{dx}$$
. (3)

b Show that
$$\frac{d^2 y}{dx^2} = e^x (x^2 + 2x - 1).$$
 (2)

- c Find the exact coordinates of the turning points of the curve and determine their nature. (4)
- **d** Show that the tangent to the curve at the point where x = 2 has the equation

$$y = e^2(3x - 5).$$
 (3)

- 10 The curve with equation $y = \frac{1}{2}x^2 3 \ln x$, x > 0, has a stationary point at A.
 - **a** Find the exact *x*-coordinate of *A*. (3)
 - **b** Determine the nature of the stationary point. (2)
 - **c** Show that the y-coordinate of A is $\frac{3}{2}(1 \ln 3)$.
 - **d** Find an equation for the tangent to the curve at the point where x = 1, giving your answer in the form ax + by + c = 0, where *a*, *b* and *c* are integers. (3)

$$f(x) = \frac{6x}{(x-1)(x+2)} - \frac{2}{x-1}$$

- **a** Show that $f(x) = \frac{4}{x+2}$. (5)
- **b** Find an equation for the tangent to the curve y = f(x) at the point with *x*-coordinate 2, giving your answer in the form ax + by = c, where *a*, *b* and *c* are integers. (4)