DIFFERENTIATION

Differentiate with respect to x

C3

1

d sin $\frac{1}{4}x$ **b** $5 \sin x$ c $\cos 3x$ **a** $\cos x$ **e** $\sin(x+1)$ **f** $\cos(3x-2)$ **g** $4\sin(\frac{\pi}{3}-x)$ **h** $\cos(\frac{1}{2}x+\frac{\pi}{6})$ **k** $\cos^2(x-1)$ **l** $\sin^4 2x$ i $\sin^2 x$ i $2\cos^3 x$ 2 Use the derivatives of $\sin x$ and $\cos x$ to show that **b** $\frac{d}{dx}(\sec x) = \sec x \tan x$ **a** $\frac{d}{dx}(\tan x) = \sec^2 x$ **d** $\frac{d}{dx}(\cot x) = -\csc^2 x$ c $\frac{d}{dx}(\operatorname{cosec} x) = -\operatorname{cosec} x \cot x$ Differentiate with respect to t3 a $\cot 2t$ **b** sec (t+2)**c** $\tan(4t-3)$ **d** cosec 3t**f** $3 \operatorname{cosec} \left(t + \frac{\pi}{6}\right)$ **g** $\operatorname{cot}^3 t$ **h** 4 sec $\frac{1}{2}t$ e $\tan^2 t$ **k** $\frac{1}{2}$ tan (π – 4t) **l** cosec² (3t + 1) j $\sec^2 2t$ **i** $\cot(2t-3)$ 4 Differentiate with respect to x**b** $6e^{\tan x}$ c $\sqrt{\cos 2x}$ **d** $e^{\sin 3x}$ **a** $\ln(\sin x)$ f $\sqrt{\sec x}$ **g** $3e^{-\cos 2x}$ e $2 \cot x^2$ **h** $\ln(\tan 4x)$ 5 Find the coordinates of any stationary points on each curve in the interval $0 \le x \le 2\pi$. a $y = x + 2 \sin x$ **b** $y = 2 \sec x - \tan x$ c $y = \sin x + \cos 2x$ 6 Find an equation for the tangent to each curve at the point on the curve with the given x-coordinate. x = 0**b** $y = \cos x$, **a** $y = 1 + \sin 2x$, $x = \frac{\pi}{3}$ $x = \frac{\pi}{4}$ **d** $y = \csc x - 2\sin x$, $x = \frac{\pi}{6}$ c $y = \tan 3x$, 7 Differentiate with respect to x**b** $\frac{\cos 2x}{x}$ c $e^x \cos x$ **a** $x \sin x$ **d** $\sin x \cos x$ **h** $\frac{\sin 2x}{e^{3x}}$ **e** $x^2 \operatorname{cosec} x$ **f** $\operatorname{sec} x \tan x$ $\mathbf{g} = \frac{x}{\tan x}$ **i** $\cos^2 x \cot x$ **j** $\frac{\sec 2x}{x^2}$ **k** $x \tan^2 4x$ $\frac{\sin x}{2}$ $\cos 2x$ 8 Find the value of f'(x) at the value of x indicated in each case. **a** $f(x) = \sin 3x \cos 5x$, $x = \frac{\pi}{4}$ **b** $f(x) = \tan 2x \sin x$, $x = \frac{\pi}{3}$

c $f(x) = \frac{\ln(2\cos x)}{\sin x}$, $x = \frac{\pi}{3}$ **d** $f(x) = \sin^2 x \cos^3 x$, $x = \frac{\pi}{6}$

C3 DIFFERENTIATION

- 9 Find an equation for the normal to the curve $y = 3 + x \cos 2x$ at the point where it crosses the y-axis.
- 10 A curve has the equation $y = \frac{2 + \sin x}{1 \sin x}$, $0 \le x \le 2\pi$, $x \ne \frac{\pi}{2}$.
 - **a** Find and simplify an expression for $\frac{dy}{dy}$.
 - **b** Find the coordinates of the turning point of the curve.
 - c Show that the tangent to the curve at the point P, with x-coordinate $\frac{\pi}{6}$, has equation

$$y = 6\sqrt{3}x + 5 - \sqrt{3}\pi$$
.

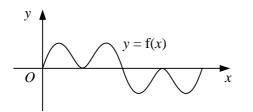
11 A curve has the equation $y = e^{-x} \sin x$.

a Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$.

- **b** Find the exact coordinates of the stationary points of the curve in the interval $-\pi \le x \le \pi$ and determine their nature.
- **12** The curve *C* has the equation $y = x \sec x$.
 - **a** Show that the *x*-coordinate of any stationary point of *C* must satisfy the equation

$$1 + x \tan x = 0.$$

- **b** By sketching two suitable graphs on the same set of axes, deduce the number of stationary points *C* has in the interval $0 \le x \le 2\pi$.
- 13



The diagram shows the curve y = f(x) in the interval $0 \le x \le 2\pi$, where

$$f(x) \equiv \cos x \sin 2x.$$

- **a** Show that $f'(x) = 2 \cos x (1 3 \sin^2 x)$.
- **b** Find the *x*-coordinates of the stationary points of the curve in the interval $0 \le x \le 2\pi$.
- **c** Show that the maximum value of f(x) in the interval $0 \le x \le 2\pi$ is $\frac{4}{9}\sqrt{3}$.
- **d** Explain why this is the maximum value of f(x) for all real values of *x*.

14 A curve has the equation $y = \operatorname{cosec} \left(x - \frac{\pi}{6}\right)$ and crosses the y-axis at the point *P*.

a Find an equation for the normal to the curve at *P*.

The point Q on the curve has x-coordinate $\frac{\pi}{3}$.

b Find an equation for the tangent to the curve at Q.

The normal to the curve at P and the tangent to the curve at Q intersect at the point R.

c Show that the *x*-coordinate of *R* is given by $\frac{8\sqrt{3}+4\pi}{13}$.