
Algebraic Fractions 
 
An algebraic fraction can always be expressed in different, yet equivalent forms. A fraction is 
expressed in its simplest form by cancelling any factors which are common to both the 
numerator and the denominator. 
 
Algebraic Fractions can be simplified by cancelling down. To do this, numerators and 
denominators must be fully factorised first. If there are fractions within the 
numerator/denominator, multiply by a common factor to get rid of these and create an 
equivalent fraction: 
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To multiply fractions, simply multiply the numerators and multiply the denominators. If 
possible, cancel down first. To divide by a fraction, multiply by the reciprocal of the fraction: 
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To add or subtract fractions, they must have the same denominator. This is done by finding 
the lowest common multiple of the denominators: 
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When the numerator has the same or a higher degree than the denominator (it is an 
improper fraction), you can divide the terms to produce a mixed fraction: 
 
 
 
 
 
 
 
 



Functions 
Functions are special types of mappings such that every element of the domain is mapped to exactly 
one element in the range. This is illustrated below for the function f (x) = x + 2 
 

 
 
The set of all numbers that we can feed into a function is called the domain of the function. The set 
of all numbers that the function produces is called the range of a function. Often when dealing with 
simple algebraic function, such as f (x) = x + 2, we take the domain of the function to be the set of 
real numbers, ℝ. In other words, we can feed in any real number x into the function and it will give 
us a (real) number out. Sometimes we restrict the domain, for example we may wish to consider the 
function f(x) = x + 2 in the interval -2 < x < 2. 
 
Consider the function f (x) = x2. What is the range of f (x)? Are there any restrictions on the values 

that this function can produce? When trying to work out the range 
of a function it is often useful to consider the graph of the 
function, this is shown left. We can see that the function only gives 
out positive numbers (x2 is always positive for any real number x). 
There are no further restrictions. We can see that f can take any 
positive value, therefore the range of f is the set of all positive 
numbers, we may write f(x) ≥ 0.  
 
 

When each of the elements of the domain is mapped to a unique element of the range, under a 
mapping, the mapping is said to be one-to-one. When two or more elements of the domain are 
mapped to the same element of the range under a mapping, the mapping is said to be many-to-one. 
Below are two 
examples.  
The mapping f is one-
to-one, the mapping 
g is many-to-one. 
We need to define 
more precisely what 
we mean by a 
‘function’.  
 



We can define a function as a rule that uniquely associates each and every member of one set with a 
member or members of another set. This means that every element of the domain is mapped to an 
element of the range such that the image of any element in the domain is unique. In other words, 
each and every element of the domain must be mapped to one and only one element of the range. 
For example, consider the expression  𝑦 = ±√𝑥 .  
 

 
Notice that any value of x in the domain, except x = 0 , (i.e. 
any positive real number) is mapped to two different values 
in the range. Therefore 𝑦 =  ±√ 𝑥 is not a function. 
 
When looking for the domain of a function, look out for 
values that would leave a negative root or 0 on the bottom 
of a fraction. At these values of x, y is undefined. 
 
 

 
 
 
 
 
 
 
 
 
 
 
  not a function      a function 
 
 
Many mappings can be made into functions by changing the domain. For example, the ‘root of x’ 
mapping can be made into a function by changing the domain from all real numbers, to all positive 
numbers. This will cut off the bottom half of the graph, meaning every element in the domain is 
matched uniquely to an element in the range. 
 

Composite Functions 
Consider the function, g (x) = (x - 2)2. If we were given a set of numbers and asked to perform the 
function g on each of them, we would have to carry out two separate calculations on any one of the 
given numbers; first we would have to subtract two from the number, then we would square the 
result. Thus, we may think of the function g as two functions in one. g is composed of the functions 
p(x) = x - 2 and  
q(x) = (p(x))2. We say that g is a composite function, and we write g (x) = q(x) × p(x). 

 
fg(x) means ‘apply g first, then f ’ 
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Inverse Functions 
Consider the simple, linear function f (x) = 3x - 27. If we feed x = 2 into this function, we get out f 

(2) = -21. Suppose that we are told that the function has produced the number 9, but we do not 

know what input produced this number. We can easily work out the input number: 

𝑓(𝑛) = 3𝑛 − 27 = 9  →   𝑛 =
9 + 27

3
= 12 

 
If we know the output of a given function and we require the input of the function, we can find it by 
using the inverse function. 
 
The inverse of a function f(x) is written f-1(x), and performs the opposite operation(s) to the function. 
There are two methods to find the inverse of a function: 
 

• Work Backwards 
− We can think of a ‘function machine’ which takes an input, performs the 

function on it and produces an output. The inverse function machine takes 
the output from the original function and gives us the original input number. 

 

• Change the Subject 
− Let y = f(x), and then rearrange the formulae to find x. You then swap x and y 

(y being f(x)). For example, g(x) = 4x – 3, so let y = 4x – 3.  
 

Rearranged to find x gives 𝑓(𝑥) = 𝑥+3
4

 
 

 

We can see that the graph of f -1 (x) is a 

reflection of the graph of f (x) in the line y = x . 
In fact, this is a general result for any invertible 
function (a function that has an inverse).  
Note that not all functions are invertible. Only 
one-to-one functions are invertible. 
 
 

 

The domain is the set of all numbers where the function is defined. Eg,  𝑓(𝑥) = 1 𝑥�   is defined everywhere 
except at x=0. The range is the set of all possible values the function can take (it usually helps to sketch a 
graph. So for example, the range of 𝑓(𝑥) = 𝑥2 is x>0. 
 

The range of 𝑓(𝑥) is the domain of 𝑓−1(𝑥), and the domain of 𝑓(𝑥) is the range of 𝑓−1(𝑥). 
The x and y coordinates where a graph meets the axis swap for the inverse graph. 

 
 

If f −1 exists, then f −1f(x) = ff −1(x) = x. 



The Modulus Function 
 

The modulus sign indicates that we take the absolute value of the expression inside the modulus 
sign, i.e. all values are positive.  
e.g.  |2 −  3|  = 1,       | 0 −  5|  =  5,         |−2|  =  2,         |1 +  7|  =  8.  
We can define: 
 

|𝑥| = �−𝑥, 𝑥 < 0
𝑥, 𝑥 ≥ 0 

 
 
𝒚 = |𝒇(𝒙)| 
Let us consider the graph of  𝑦 = |𝑥2 − 4| . As |𝑥2 − 4| is always positive, the graph of 𝑦 = |𝑥2 − 4| 
cannot exist below the x-axis. For positive values of x, the graph of  |𝑥2 − 4| is the same as the graph 
of 𝑦 = |𝑥2 − 4|; but for negative values of x, the graph 𝑦 = |𝑥2 − 4| is the line 𝑦 = −(𝑥2 − 4) 

 
Note that the graph of 𝑦 = |𝑥2 − 4|is similar to the graph of 𝑦 = 𝑥2 − 4 
except that the negative region of the graph is reflected in the x-axis. In 
general, the graph of 𝑦 = | 𝑓 (𝑥)| is similar to the graph of 𝑦 =  𝑓 (𝑥) 
except that the negative region of the graph is reflected in the x-axis. 
 
 

 
𝒚 = 𝒇(|𝒙|) 
For the function 𝑦 =  𝑓(|𝑥|), the value of y at, for example x= -3, is the same as the value at y for 
x=3. This is because 𝑦 =  𝑓(|−3|) = 𝑓(|3|). The result of this is that the graph is reflected in the y-
axis. The example below is of 𝑦 = 3 − |𝑥| 
 
There are two ways to sketch graphs of the form 𝑦 =
𝑓(|𝑥|): 

1. Draw the graph for positive value of x, then 
reflect it in the y-axis to give a line of 
symmetry at x=0 

2. Draw the graph of |𝑥| and then 

transform it by the vector �03�  

To solve an equation of the type |𝑓(𝑥)| = 𝑔(𝑥): 
• Use a sketch to locate where the roots should roughly lie 
• Solve algebraically, using −𝑓(𝑥) for reflected parts of 𝑦 = 𝑓(𝑥) and −𝑔(𝑥) for 

reflected parts of 𝑦 = 𝑔(𝑥) 
 
To solve the equation |𝑎𝑥 + 𝑏| = |𝑐𝑥 + 𝑑|  it is easiest to square both sides to remove the 
modulus sign. 
Equations of the form |𝑎𝑥 + 𝑏| = 𝑐𝑥 + 𝑑  need to be solved graphically. 



 
Transformations 
When given a sketch of  𝑦 = 𝑓(𝑥), you need to be able to sketch transformations of the graph, 
showing coordinates of the points to which the given points are mapped. 
 

 
 
These may be combined to give, for example  𝑏𝑓(𝑥 + 𝑎), which is a horizontal translation of –a 
followed by a vertical stretch of scale factor b. 
 
For combinations of transformations, the graph can be built up one step at a time starting from a 
given curve. 
 
 
 
 
 



Numerical Methods 
 
In real life situations, we are often faced with equations which have no analytic solution. 
That is to say we cannot find an exact solution to the equation. For example, we can solve 
the equation  𝑥2  +  𝑥 −  2 =  0 by factorising (𝑥 +  2)(𝑥 − 1)  =  0    𝑥 =  −2 or   
𝑥 = 1.  
 
The above equation can be solved analytically to find the exact solutions. What about the 
equation  𝑐𝑜𝑠 (𝑥)  −  𝑥 =  0 . This equation cannot be solved analytically unlike the 
previous example. We cannot find the exact solution of this equation using algebraic, or any 
other techniques. We cannot solve this equation exactly, however we can find the 
approximate solution or solutions to the equation  𝑐𝑜𝑠 (𝑥)  −  𝑥 =  0 . In fact, we can find 
the solution or solutions to an arbitrary degree of accuracy, however the more accurate we 
require our solution(s), the longer the process. 
 
There are 3 numerical methods that can be used to find approximations to the root(s) of a 
function which may not be possible to find analytically: 

1. Graphically 
2. Looking for a change of sign 
3. Iteration 

 
 
 
Graphically 
You can find approximations for the roots of the equation 𝑓(𝑥) = 0 graphically. This is the 
simplest numerical method, and is done by drawing the graph of the given function. The 
root(s) will lie where the graph crosses the x-axis. From looking at a graph, you can see 
roughly where this point is, therefore can say a root lies between 𝑥 = 𝑎 and 𝑥 = 𝑏 
 
 
Suppose we want to solve the 
equation   𝑐𝑜𝑠 𝑥 −  𝑥 =  0 . The 
graph of 𝑦 =  𝑓 (𝑥)  =  𝑐𝑜𝑠 𝑥 −  𝑥 
is shown. We know that the solution 
of 𝑓 (𝑥)  =  0 corresponds to the 
point where the graph of 𝑓 (𝑥) cuts 
the x-axis. So we can tell, just from 
plotting the graph, that the solution is 
somewhere around  𝑥 =  0.7 .  
We notice that to the left of the root, 
the function is positive and to the 
right of the root the function is 
negative. 
 



Change of Sign 
In general, the sign of a function, (𝑥), to the left of a root is opposite to the sign of the 
function to the right of the root. We can use this simple fact to help us find the roots of 
equations.  
 

For example to solve  𝑐𝑜𝑠 𝑥 −  𝑥 =  0 , we can calculate the value of the function at a few 
points and see if we get a change of sign: 𝑓 (0)  =  𝑐𝑜𝑠(0)  −  0 = 1 −  0 = 1 (positive), 
𝑓 (1)  =  𝑐𝑜𝑠(1)  − 1 » − 0.4597 (negative), so we can say that there is a zero somewhere 
between x = 0 and x =1.  
To get a more accurate approximation to the root, we could look at the value of the 
function f (x) at the point mid-way between 𝑥 =  0 and   𝑥 = 1, i.e. at the point  𝑥 =  0.5 . 
We see that  𝑓 (0.5) =  𝑐𝑜𝑠 (0.5) −  0.5 =  0.3776 (positive). So now we can say that the 
root lies somewhere between 𝑥 =  0.5 and   𝑥 = 1. To get a better approximation, you can 
continue to values closer and closer together. 

 
In general, if you find an interval in which 𝒇(𝒙) changes sign, then the interval must 

contain a root of the equation 𝒇(𝒙) = 𝟎 
 

The only exception to this is when 𝑓(𝑥)  has a discontinuity in the interval e.g. 𝑓(𝑥) = 1 𝑥�  
has a discontinuity at 𝑥 = 0. 
 
Iteration 
The iteration method uses a formula that by inputting an approximate value of x, a more 
accurate value is outputted.  
The first step in the process is to rearrange the equation into the form x = some function of 
x (if not already given). Then an approximate value of x is input into the equation, and the 
process repeats to give more and more accurate values of the roots of the equation. 
 

For example, let us consider the equation cos(𝑥) − 𝑥 = 0. The most obvious way of 
rearranging this would give  𝑥 = cos (𝑥). Now the iteration formula is 𝑥𝑛+1 = cos (𝑥𝑛). We 
start with an initial guess to the root x0. Let us make our initial guess  x0 = 0.7 . We then feed 
the initial guess into the iteration formula, to produce a better approximation of the 
solution,  x1 . We then feed x1 into the iteration formula to produce a better approximation,  

x2  and so forth. 

𝑥 ≈ 0.7394 



Exponential and Log Functions 
The exponential function (e) and the natural logarithm function (ln) are both the inverse operations 
of one another. 𝑒ln (𝑥) = ln (𝑒𝑥) = 𝑥 
 
 
e is a special number similar to 𝜋. It has a 
value of 2.718 to 3dp (although it is an 
irrational number). This value is the only one 
at which the value of the gradient of an 
exponential graph at a given point is equal to 
the gradient. As with all exponential 
functions, it passes through the point (0, 1), 
providing it has not been transformed. 
 
The domain is all real numbers and the 
range is f(x) > 0. 
 
 

The inverse of the exponential function ex
 is the logarithmic function base e, ln(x). 

𝐼𝑓 𝑓 (𝑥)  =  𝑒𝑥  , 𝑡ℎ𝑒𝑛 𝑓(𝑥)−1  =  𝑙𝑛 𝑥 
 
 
The natural log function is a reflection 
of the line y = ex in the line y = x. It 
passes through the point (1, 0) 
providing it has not been transformed. 
The main features of the graph are: 
─ As 𝑥 → 0,𝑦 →  −∞ 
─ ln(x) doesn’t exist for negative 

numbers 
─ when x = 1, y = 0 
─ As 𝑥 → ∞,𝑦 → ∞ (slowly) 

 
The domain is all positive numbers. 
The range is all real numbers. 
 

 

To solve an equation using ln(x) or ex you must change the subject of the formula and use 
the fact that they are inverses of each other in order to find x. 



Trigonometry 
For one-to-one functions, you can draw its inverse graph by reflecting it in the line y = x. The 
three trig functions sin(x), cos(x) and tan(x) only have an inverse function if their domains 
are restricted so that they are one-to-one functions. The notations used for these inverse 
functions are arcsin(x), arcos(x) and arctan(x). 
arcsin(x) 
When drawing the graph of arcsin(x), you start with a normal sin(x) graph. The domain of 
this has to be restricted to −𝜋

2
≤ 𝑥 ≤ 𝜋

2
 or −90 ≤ 𝑥 ≤ 90. This makes it a one-to-one 

function, taking the range −1 ≤ sin (𝑥) ≤ 1. 
 

The graph can then be reflected in the line y = x to find its 
inverse graph, ie. the graph of arcsin(x). 
As with all inverse graphs, the range and the domain swap, so 
the domain is −𝜋

2
≤ arcsin (𝑥) ≤ 𝜋

2
 and the range becomes 

−1 ≤ 𝑥 ≤ 1 
 
 

 
arccos(x) 
For arcos(x), the graph of cos(x) is restricted to a domain of 0 ≤ 𝑥 ≤ 𝜋 or 0 ≤ 𝑥 ≤ 90, and a 
range of −1 ≤ cos (𝑥) ≤ 1. 

 
When reflected in the line y = x it gives the graph of arcos(x).  
 
The domain becomes −1 ≤ 𝑥 ≤ 1 
 

The range becomes 0 ≤ 𝑎𝑟𝑐𝑜𝑠(𝑥) ≤ 𝜋 
 
 
 

arctan(x) 
By restricting the domain of tan(x) to −𝜋

2
≤ 𝑥 ≤ 𝜋

2
, it becomes a one to one function. The 

range stays  tan (𝑥) ∈ ℝ.  
 

When reflected in the line y = x it gives the graph of arctan(x). 
 
The domain becomes 𝑥 ∈ ℝ 
 
The range becomes −𝜋

2
≤ arctan (𝑥) ≤ 𝜋

2
 

 
 

 

nb: 𝑠𝑖𝑛−1 𝑥 does not mean the same thing as  
1

𝑠𝑖𝑛 𝑥
 



Secant, Cosecant and Cotangent 
In addition to the normal three trig functions, there are secant, cosecant and cotangent: 
 

sec(𝑥) =
1

cos(𝑥)
 

 

cosec(𝑥) =
1

sin (𝑥)
 

 

cot(𝑥) =
1

tan (𝑥)
=

cos(𝑥)
sin (𝑥)

 

 

 
  
  
 
Pythagorean Identities 
From sin2 𝜃 + cos2 𝜃 ≡ 1, we can work out two more identities using the above functions: 
 
          sin2 𝜃 + cos2 𝜃 ≡ 1                     sin2 𝜃 + cos2 𝜃 ≡ 1 
 
 

   sin
2𝜃

cos2 𝜃
+ cos2𝜃

cos2𝜃
≡ 1

cos2𝜃
                                                    

sin2𝜃
sin2𝜃

+ cos2𝜃
sin2𝜃

≡ 1
sin2𝜃

 
 
 

𝑡𝑎𝑛2 𝜃 + 1 = 𝑠𝑒𝑐2 𝜃                    1 + 𝑐𝑜𝑡2 𝜃 = 𝑐𝑜𝑠𝑒𝑐2𝜃 
 

 
These are undefined when 
sin(x)/cos(x)/tan(x) is equal to zero, as it 
would leave 0 as the numerator, which is not 
a real number. 
 
The graphs of these functions are found by 
plotting points using these formulae. 

Secant Cosecant Cotangent 



Addition Formulae 
The addition formulae can help solving equations by removing an unknown from a bracket, 
or at least separate it from know values, eg.  sin (𝜃 + 30) 
The addition formulae are: 
 

sin(𝐴 ± 𝐵) = sin𝐴 cos𝐵 ± cos𝐴 sin𝐵 
 

cos(𝐴 ± 𝐵) = cos𝐴 cos𝐵 ∓ sin𝐴 sin𝐵 
 

tan(𝐴 ± 𝐵) =
tan𝐴 ± tan𝐵

1 ∓ tan𝐴 tan𝐵
 

 
 
Double-Angle Formula 
From the above addition formulae, the following can be worked out. They allow you to solve 
more equations and prove more identities. 
The double-angle formulae are as follows: 
 

sin 2𝐴 = 2 sin𝐴 cos𝐴 
 
cos 2𝐴 = cos2 𝐴 − sin2 𝐴   =   2 cos2 𝐴 − 1  =   1 − 2 sin2 𝐴 
 

tan 2𝐴 =
2 tan𝐴

1 − tan2 𝐴 

 
The 𝑐𝑜𝑠(2𝐴) formula has 3 different versions that can be worked out by substituting in the 
identity  sin2 𝐴 + cos2 𝐴 = 1. 
 
 
Factor Formulae 
From the previously stated identities, these factor formulae can be worked out, however 
they are given in the formulae sheet. 
 
 

sin𝐴 ± sin𝐵 = 2 sin
1
2

(𝐴 ± 𝐵) cos
1
2

(𝐴 ∓ 𝐵) 

 

cos𝐴 + cos𝐵 = 2 cos
1
2

(𝐴 + 𝐵) cos
1
2

(𝐴 − 𝐵) 



The R-Alpha Method 
You can write expressions of the form 𝑎 cos 𝑥 + 𝑏 sin 𝑥, where a and b are constants, as a 
sine function or a cosine function only. Having the ability to do this enables you to solve 
certain sorts of trigonometric equations and find maximum and minimum values of some 
trigonometric functions. This will only find values for acute angles of α. 
 
We study the expression 𝑅𝑐𝑜𝑠(𝑥 − 𝛼) and note that 𝑐𝑜𝑠(𝑥 − 𝛼) can be expanded using an 
addition formula. 

𝑅𝑐𝑜𝑠(𝑥 −  𝛼) =  𝑅(𝑐𝑜𝑠 𝑥 cos𝛼  +  𝑠𝑖𝑛 𝑥 sin𝛼) =  𝑅𝑐𝑜𝑠 𝑥 cos𝛼  +  𝑅𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝛼 
 
We can re-order this expression as follows: 

𝑅𝑐𝑜𝑠(𝑥 −  𝛼)  =  (𝑅𝑐𝑜𝑠 𝛼) 𝑐𝑜𝑠 𝑥 +  (𝑅𝑠𝑖𝑛 𝛼) 𝑠𝑖𝑛 𝑥 
 
If we want to write an expression of the form 𝑎 𝑐𝑜𝑠 𝑥 +  𝑏 𝑠𝑖𝑛 𝑥 in the form  𝑅𝑐𝑜𝑠(𝑥 − 𝛼), 
we can do this by comparing 𝑎 𝑐𝑜𝑠 𝑥 +  𝑏 𝑠𝑖𝑛 𝑥 with (𝑅𝑐𝑜𝑠 𝛼) 𝑐𝑜𝑠 𝑥 +  (𝑅𝑠𝑖𝑛 𝛼) 𝑠𝑖𝑛 𝑥 
 
Doing this we see that 

𝑎 =  𝑅𝑐𝑜𝑠 𝛼       (1)  
and    𝑏 =  𝑅𝑠𝑖𝑛 𝛼        (2) 

 
By squaring each of Equations (1) and (2) and adding we find: 

𝑎2 +  𝑏2  =  𝑅2 𝑐𝑜𝑠2 𝛼 +  𝑅 
2𝑠𝑖𝑛2𝛼 

         =  𝑅2(𝑐𝑜𝑠2 𝛼 +  𝑠𝑖𝑛2𝛼) 
                                                                    =  𝑅2 
Therefore 𝑅 = √𝑎2 + 𝑏2 
 
 

We can find 𝛼 by dividing Equation (2) by Equation (1) to give 
 

𝑅𝑠𝑖𝑛 𝛼
𝑅𝑐𝑜𝑠 𝛼 =

𝑏
𝑎 = tan𝛼 

 
Knowing tan𝛼 we can find α by finding arctan. So, now we can write any expression of the 
form 𝑎 cos 𝑥 +  𝑏 sin 𝑥  in the form 𝑅𝑐𝑜𝑠(𝑥 −  𝛼).  
 
This same method works to find solutions in the form 𝑅𝑠𝑖𝑛(𝑥 − 𝛼). This is done by using the 
addition rule with 𝑠𝑖𝑛(𝑥 − 𝛼) and then following the normal steps. 
 
Maximum/Minimum Points: 
The maximum value of the cosine function is 1 and this occurs when the angle x − α = 0, 
i.e. when x = α. The maximum value of a sine function is also 1, however it occurs when the 
angle x – α = 90, i.e. when x = 90 + α.  
Conversely, the minimum value of the cosine and sine functions is -1. For cos, this occurs at 
180. For sin it occurs at 270.  
Using these facts, the maximum and minimum points, and the values of x at which they 
occur, can be worked out. However, the value of R before the sin/cos function will stretch 
the graphs, meaning the max/min point is generally ±𝑅. This needs to be taken into 
consideration when finding the values for x. 



Differentiation 
The Chain Rule 
The chain rule exists for differentiating a function of another function, for example  cos(𝑥2). 
This is an example of a composite function – it comprises of two functions f(x) and g(x), 
where f(x) = cos x  and  g(x) = x2. Composite functions come in the form f(g(x)). 
 
 
To differentiate y = f(g(x)), let u = g(x). Then y = f(u). The chain rule in order to differentiate 
is given by  

𝑑𝑦
𝑑𝑥 =

𝑑𝑦
𝑑𝑢 ×

𝑑𝑢
𝑑𝑥 

 
 
Also, a particular case of the chain rule is that  
 

𝑑𝑦
𝑑𝑥 =

1

�𝑑𝑥𝑑𝑦�
 

 
 
The Product Rule 
By using the product rule, you can differentiate functions that have been multiplied 
together., for example 𝑥2√3𝑥 − 1.  
To differentiate the product of two functions, differentiate the first function, then multiply it 
by the normal second function. Then add to this the differentiated second function 
multiplied by the normal first function. 
 
If 𝑦 = 𝑢𝑣, then  

𝑑𝑦
𝑑𝑥 = 𝑢

𝑑𝑣
𝑑𝑥 + 𝑣

𝑑𝑢
𝑑𝑥 

 
 
The Quotient Rule 
You can differentiate rational function in the form 𝑢(𝑥)

𝑣(𝑥)
 by using the quotient rule. It is used 

when one function has been divided by another, for example 
𝑥

2𝑥+5
 

 
If  𝑦 = 𝑢

𝑣
, then 

 

𝑑𝑦
𝑑𝑥 =

𝑣 𝑑𝑢𝑑𝑥 − 𝑢 𝑑𝑣𝑑𝑥
𝑣2  



Standard Derivatives 
There are certain functions that have standard derivatives, some of which are given in the 
formula sheet, such as tan, sec, cot, and cosec. Others need to be remembered, such as 
ln(x), ex, sin x and cos x. 
 
 

• If 𝑦 = 𝑒𝑓(𝑥), then 𝑑𝑦
𝑑𝑥

= 𝑓′(𝑥) 𝑒𝑓(𝑥) 
 

One of the most important features of the function f (x) = ex
 is that this function is its own 

derivative, i.e. if 𝑓 (𝑥)  =  𝑒𝑥,  then 𝑓 ′(𝑥)  =  𝑒𝑥   also. This result can be used with the 
chain, product and quotient rules to enable you to differentiate other functions, giving te 
standard result above. 
 

• If 𝑦 = ln[f (𝑥)], then 𝑑𝑦
𝑑𝑥

= 𝑓′(𝑥)
𝑓(𝑥)

 

 
This is a more general version of ln(x) differentiating to 1/x, and is found by using the chain 
rule. 

• If 𝑦 = sin 𝑥, then 𝑑𝑦
𝑑𝑥

= cos 𝑥 
 
This result can be used along with the chain rule to differentiate more complicated 
expressions, or along with the quotient rule and the derivative of cos x to work out the 
derivative of tan x. 
 

• If 𝑦 = cos 𝑥, then 𝑑𝑦
𝑑𝑥

= − sin 𝑥 
 
This result can be used along with the chain rule to differentiate more complicated 
expressions, or along with the quotient rule and the derivative of sin x to work out the 
derivative of tan x. 
 
The formula that are given in the formula sheet: 
 

• If 𝑦 = tan 𝑥,   then  𝑑𝑦
𝑑𝑥

= sec2𝑥 

 

• If 𝑦 = cosec 𝑥,   then  𝑑𝑦
𝑑𝑥

= −cosec 𝑥 cot 𝑥 

 

• If 𝑦 = sec 𝑥,   then  𝑑𝑦
𝑑𝑥

= sec 𝑥 tan 𝑥 

 

• If 𝑦 = cot 𝑥,   then  𝑑𝑦
𝑑𝑥

= −cosec 2𝑥 

 


