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1  Algebraic fractions

Cancelling common factors

. x® —2x% —3x
Example: Simpli _— .
P plity 4x°> — 36

Solution:  First factorise top and bottom fully —

x* —2x% =3x _ X(x*-2x-3) x(x-3)(x+1)

4x% - 36 4(x*-9)  4(x-3)(x+3)
and now cancel all common factors, in this case (x — 3) to give
Answer = M .
4(x+3)

Multiplying and dividing fractions
This is just like multiplying and dividing fractions with numbers and then cancelling common
factors as above.

x> -4 3x*-x-2

Example: Simpli +
P plify 3x% — 2x X3 + x?

Solution:  First turn the second fraction upside down and multiply

9x2 — 4 5 X + x?
3x2—2x 3x*—-x-2

factorise fully

(Bx-2)3x+2) x*(x+1)
X(3x—2) (Bx+2)(x-1)
X(x+1)
x—1

cancel all common factors

Answer =

Adding and subtracting fractions

Again this is like adding and subtracting fractions with numbers; but finding the Lowest
Common Denominator can save a lot of trouble later.

3x 3 5
X2 —7x+12 x2-4x+3

Solution:  First factorise the denominators

Example:  Simplify

_ : 3?2( ) _ ( 3;3( 5 we see that the L.C.D. is (x — 3)(x — 4)(x — 1)
X—=3)(x - X—9)(X—
3x(x -1) ~ 5(x—4)

(x=3)(x-4)(x-1) (xX=3)(xX-D(x—4)

3x* -3x-5x+20  3x*-8x+20
(X—D(x-3)(x—4) (x-1)(x-3)(x-4)

which cannot be simplified further.
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Equations

Example: Solve X _x-l = 1

X+1 X 2

Solution:  First multiply both sides by the Lowest Common Denominator

X x-1 1 . .
—_— = multiply both sides by 2x(x + 1)
x+1 X 2
Xx2X —(x=1)x2(x+1)=x(x+1)
2 =2 +2=x+x
X +x—-2=0,
x+2)(x-1)=0

x==2or1l

U4 Ul
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2  Functions
A function is an expression (often in x) which has only one value for each value of x.

Notation
y=x"-3x+7, f(X)=x*-3x+7 and f:x— xX*-3x+7

are all ways of writing the same function.

Domain, range and graph
The domain is the set of values which x can take:

this is sometimes specified in the definition
sometimes is evident from the function: e.g. for Vx, x can only take positive x or zero values.

The range is that part of the y—axis which is used.

Example: Find the range of the function

f:x—2x-3 withdomain xe R: 2<x<4.

617 /
Solution:  First sketch the graph for values of x between — 2 4
. A range =2x-3
and 4 (the domain), and we can see that we are only using 5 ymex
the y—axis from -7 to 5, domain x
4 -2 2 4 6

not including y = -7 (since x #-2), -2

but including y =5 (since x can equal 4) L

and so the range is L

ye R —-7/<y<5. ,

ro-8

Example: Find the largest possible domain and the range for the function

fix—>4Xx-3+1.

Solution:  First notice that we cannot have the square root of a negative number and so
X — 3 cannot be negative

= x-320

= largest possible domainis x € R: x> 3.

y
To find the range we first sketch the graph 6
and we see that the graph will cover all of the 4 y=v(x-3)+1
range
y-axis from 1 upwards 2
domain
andsotherangeis ye R: y>1. 2 2 4 6/ 8 10 12 14 16
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Example: Find the largest possible domain and the range for the function

2X i i .
f:x —>—1. Give the equations of its asymptotes.
X+

Solution:  The only problem occurs when the denominator is 0, and so x cannot be —1.

Thus the largest domainis x € R: x = -1.

To find the range we sketch the graph I 8lY
and we see that y can take any value i 6
y=2x/(x+1) /1
except 2, | range
I asymptote y=2
sotherangeis y € R: y# 2. domain | domain x
—8—6—4—2?2468
|
L
Asymptotesare x=-1 and y=2 asymptote x=—1 } range
I
He

Defining functions
Some mappings can be made into functions by restricting the domain.
Examples:

1) The mapping x — \x where x e R is not a function as V-9 is not defined, but if we
restrict the domain to positive or zero real numbers then f:x — ' x where x € %, x>0
is a function.

2) x> is where x € R is not a function as the image of x =3 is not defined,
X_

but f:x— LS where x € R, X # 3 is a function.
X_
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Composite functions
To find the composite function fg we mustdo g first.

Example: f:x—>3x-2 and g:x—x*+1. Find fg and df.

Solution:  Think of f and g as ‘rules’

f is multiply by 3 »| subtract 2

g is square

A 4

add 1

= fg is | square » add 1 » multiplyby 3 —»{ subtract 2
giving (C+1)x3-2 = 3°+1

= fg:x—>3¢+1 or fgx) = 3x°+1.

gf is | multiplyby 3 |—»| subtract 2 > square » add 1

giving (3x—2)’+1 = 9x*-12x+5
= gf:x>9*-12x+5 or gf(x)=9x°—12x+5.

Note that fg and gf are not the same.

Inverse functions and their graphs
The inverse of f is the “‘opposite’ of f:

thus the inverse of ‘multiply by 3’ is “divide by 3’

and the inverse of ‘square’ is ‘square root’.

The inverse of f iswritten as f : note that this does not mean ‘1 over f’.

The graph of y=f(x) is the reflection in y = x of the graph of y = f (x).

To find the inverse of a function x >y
(i) interchange x and y
(i) find y interms of x.
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Example: Find the inverse of f:x — 3x - 2.

Solution:  We have x >y =3x-2

() interchanging x andy = x=3y-2
(i) solvingfory = y= X%Z
= f‘l'x—>X+2
' 3
X+3

Example: Find the inverse of g:x — .
2X—5

Solution: Wehave x >y = X+3
2x -5
Q) interchanging x andy
_y+3
2y -5

(i) solving for y

= Xx(2y-5) = y+3

= 2Xy —5x=y+3
= 2xy —y =5x+3
= y(2x-1) = 5x+3

S5X +3
= =

2x -1

-1, 5x +3

= g ix—

2x -1

Note that ff™*(x) = f 1f(x) = x.
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Domain and range of inverse functions

Note that the domain of f(x) is the range of f ~(x),
and that the range of f (x) is the domain of f ~(x).
This is because the graph of y=f ~(x) isthatof y=f(x) after a reflection in the line y = x.

Example: f(x) = (x-3)*+4, xe R, x<3.
(@) Sketch the graph of y = f (x), and state its range.
(b) Find the inverse function, f™*(x) and sketch its graph on the same diagram.
Show the line y = x on your diagram.
(c)  State the domain and range of f™(x).

Solution:
(@  Asthe domain of f is x <3, we only ,
have the ‘left’ part of the parabola. Vi
8 y=f(x) 7
Therangeis f(x) >4, f(x) € R. //
7/
6 ~ ya
(b)  To find the inverse, swap x and y, then S
find y. 4 / +7

X =(y-3)P°+4 /
2 7 y=fYx)
= y-3=tVx—4. 7

7/
From the reflection of y=f(x) iny=x, p: 5 5 A A ¥
we can see that we want the negative 7
sign 4
/ =2
= y=3-vVx —4.

(©) The domain of f(x) is x>4 (the range of f (X)).
The range of f(x) is f(x) <3 (the domain of f (x)).
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Modulus functions

Modulus functions y =|f (x)|

[f (X)| is the ‘positive value of f (x)’,

so to sketch the graph of y =|f (x)| first sketch the graph of y =f(x) and then reflect the
part(s) below the x—axis to above the x—axis.

Example:  Sketch the graph of y = |x* - 3.

Solution:
First sketch the graph of y = x* — 3x Then reflect the portion below
the x-axis in the x—axis to give
3ty / 3ty /
y=x>-3X y=|x-3X|
2 ‘ 2
1 {
X X
-1 1 2 4 -1 1 2 3 4
-1 -1
-2 -2
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Modulus functions y =f (|x|)

In this case f(-3)=f(3), f(-5) =f(5), f(-8.7) =1 (8.7) etc. and so the graph on the
left of the y—axis must be the reflection of the graph on the right of the y-axis,

S0 to sketch the graph, first sketch the graph for positive values of x only, then reflect
the graph sketched in the y-axis.

Example: Sketch the graph of y =[x/ — 3|x|.

\ M /
\ y=x>-3x
\\ 2
\
\\ 1
\\ / X
Solution:  f(x) = x* - 3x T "‘\\ 2N i
\ 71
= f(Ixl) = [x[?-3]x] \
N -
First sketch the graph of y = x* — 3x for positive
values of x only. gy |
, y=IxI=3Ix]
Then reflect your graph in the y—axis to 1
complete the sketch. -4 2 1 2 4
1
=2
Standard graphs
81Y [ / I
y=x®  y=X y=x*
2 y=x2
]
X
-3 -2 -1 1 2
-1 «
1 2
-2
-1
y
y
2 3
y=1/x
1 2 ‘
y=+vX
1 2 1
X
-1 1 2 3 4 5 6 7
-1
C3 JUNE 2016 SDB
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Combinations of transformations of graphs

We know the following transformations of graphs:
y=f(x)

a
] becomes y=f(x—a) + b

translated through (b

stretched factor a inthe y-direction becomes y = a x f (x)

stretched factor a inthe x-direction becomes y = f(ij
a

reflected in the x-axis becomes y= —f (x)
reflected in the y-axis becomes y =f (-x)
We can combine these transformations:

Examples:

1) y = 2f (x = 3) isthe image of y =f (x) under a stretch in the y-axis of factor 2

3
followed by a translation (Oj , or the translation followed by the stretch.

2) y =3x?+6 isthe image of y=x* under a stretch in the y-axis of factor 3
0
followed by a translation (6} :

BUT these transformations cannot be done in the reverse order.
To do a translation before a stretch we have to notice that

0
3x? + 6 = 3(x* + 2) which is the image of y = x* under a translation of (2}

followed by a stretch in the y-axis of factor 3.

3) y =—sin(x + ©t) is the image of y =sin x under a reflection in the x-axis

followed by a translation of ( Oﬂj' or the translation followed by the reflection.
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Sketching curves
When sketching curves, show the coordinates of the intercepts with the axes, and the
equations of any asymptotes — show the asymptotes with dotted lines.

Example: Sketch the curve y =4 — % x>0

Solution:
S1y
asymptote y=4

asymptote
x=0

-2 -1 1 2 3 4 5

Note that the domain is x >0, so no graph to the left of the y-axis.
X#0 = curve does not meet the x-axis

y=0= x=1

Thinking of y = _72 translated up 4,

the horizontal asymptote is y = 4.
Do not forget that the y-axis, x = 0, is also an asymptote.
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Trigonometry

Sec, cosec and cot

. . 1 . . 1
Secant is written SeCX= —; cosecant is written cosec X = ——
COS X sin X
. . 1 COS X
cotangent is written cotx= ——=——
tanx sinx
Graphs
y I I
y=cosecx
y=secx
y=COSX y=S|nx0
- ™ 2m - 1-r

14

Notice that your calculator does not have sec,
cosec and cot buttons so to solve equations

involving sec, cosec and cot, change them Zn

I

y=tanx  y=cotx

into equations involving sin, cos and tan and
then use your calculator as usual.

Example:

Solution:

Example:

Solution:

=

Find cosec 35°

cosec 35° = — L — = 1
sin35° 0-53576...

Solve secx=3-2 for 0<x<2r
1

=1.-743 to 4 S.E

secx =32 = ——=32=>= cosx = —=0-3125

COS X
X = 1.25 or 27-1-25=5.03 radians to 3 S.F.

1
3.

2
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Inverse trigonometrical functions

The inverse of sin x is written as arcsin x or sin™* x and in order that there should only be
one value of the function for one value of x we restrict the domainto —"/, <x< 7, .

Note that the graph of y = arcsin x is the reflection of part of the graph of y =sin x in the

liney =x.

Similarly for the inverses of cos x and tan x, as shown below.

Graphs
y= arcsin x y = arccos X
y y=X y //'
y=arcsinx /| //
2 ya y=arccosx \ " 1
4
Z y=sinx
X 2
- -2 -1 1 2 3 4 m
J y=COSX
////
| P -m/2 3 - 21 /%
4 4
// //
/// //
y = arctan X
I e
y=tanx = y=x
//, )
2 // y=arctanx
7/
rd
//
X
-6 -5 —7—3 -2 -1 1 2 4 5
7/
7,
7
/7
/
// _1T/2
/1
7/
7
///

C3 JUNE 2016 SDB
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Trigonometrical identities
You should learn these

sin? @ +cos? 0 =1 tan(A- B) - tan A-tan B
tan’0 + 1 = sec’d 1+ tan Atan B
1 + cot’d = cosec?d tan 2 A = 2tan A
sin(A+B) = sinAcosB + cosAsinB 1-tan® A
sin (A—B) = sinAcosB — cos AsinB tan 3A = 3tan A—tan’ A
sin2A = 2sinAcosA 1-3tan’ A
cos (A+B) = cosAcosB - sinAsinB SinP+sinQ = 2sin P+Q cosP_Q
cos (A—B) = cosAcosB + sinAsinB 2 2
COS2A = Cos’A — sin” A sinP —sinQ = 2cos P+Q sinp-Q

= 2cos’ A-1 2 2

= 1-2sin” A CosP +c0sQ = 208 P+Q P-Q
sinffA = Y% (1-cos 2A) 2 2
COs"A = ¥ (1 +cos 2A) cosP-cosQ = -2sin P+Q sinp_Q
sin®% 0 = Y (1 - cos 6) 2 2
c0s’% O = % (1 +cos 6) 2sin AcosB = sin(A + B) + sin(A-B)
sin3A = 3sinA — 4sin®A 2cosAsinB = sin(A+B) — sin(A-B)
cos 3A = 4 cosPA — 3cos A 2cosAcosB = cos(A+B) + cos(A-B)
tan(A+ B) = tan A + tan B -2sin AsinB = cos(A +B) — cos(A-B)

1-tan Atan B

The last four formulae, 2 sin A cos B = sin(A + B) + sin(A—B) etc., are not in the formula
booklet, and should be learnt.

P+Q

You should know the proofs of the four formulae sin P +sin Q =2 sin —cos— etc.
Proof of sin P + sin Q =2 sin %Q cos P;—Q

We know that sin(A+B) = sinAcosB + cosAsinB

and sin(A—B) = sinAcosB — cosAsinB

= sin(A+B) — sin(A-B) = 2sinAcosB

Now put P=A+B, and Q=A-B

= P+Q=2Aand P-Q=28 = A=—% andB=—%

P
= sinP+sinQ= 25|nLQcos—Q

The other formulae can be proved in a similar way.
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Finding exact values
When finding exact values you may not use calculators.
Example: Find the exact value of cos 15°
Solution:  We know the exact values of sin 45°, cos 45° and sin 30°, cos 30°

so we consider  cos 15 = cos (45-30) = cos 45 cos30 + sin 45 sin 30

V341 _ 4B+ A2
22 T 4

= X

1 _
+ X3 =

N

Sl
-

Example: Giventhat A is obtuse and that B is acute, and sin A =3/5 and cos B = /1 find

the exact value of sin (A + B).

Solution:  We know that sin (A + B) = sin Acos B + cos Asin B so we must first find

cos A and sin B.

Using sin? @ +cos? 0 =1

=  c0s’A = 1-%5=" and sin®B = 1-"/155 = “1e

= cosA = £%5and sinB = +%/;

But A is obtuse so cos A is negative, and B is acute so sin B is positive
= cosA = -*sand sinB =

= sin (A+ B) = 3/5><5/13 + —4/5><12/13 = _33/65

Proving identities.

Start with one side, usually the L.H.S., and fiddle with it until it equals the other side.
Do not fiddle with both sides at the same time.

Example: Prove that CoS2A+1 cot? A
X : v — = .
P 1-cos2A

cos2A+1  2cos’ A-1+1 _ 2cos® A

Solution: L.H.S. = =

_ = — = cot>? A. Q.E.D.
1-cos2A 1-(1-2sin’A) 2sin? A Q
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Eliminating a variable between two equations

Example: Eliminate € from the parametric equations x=sec 8 —1, y =tan 6.

Solution: We remember that tan?6 +1 = sec?d
= sec’d — tan’0 =1.
secd =x+1 and tand =y
=  (x+1’ -y =1

= y' = (x+1)? -1 = x*+2x

Solving equations

Here you have to select the *best’ identity to help you solve the equation.

Example:  Solve the equation sec’A = 3—tan A, for 0< A < 360"

Solution: We know that tan’A + 1 = sec’A

=  tanA+1 = 3-tanA

(tanA-1)(tanA+2) = 0
tanA =1 or tanA= -2
A = 45, 225, or 116-6, 296-6.

u 4l

Example: Solve sin3x—sin5x=0 for0°< x < 90°.
Solution:  Using the formula sin P —sin Q =2 cos

= 2co0s4xsin(—x)=0 = cos4xsinx=0

= c0s4x =0, or sinx=0

= 4x =90, 270, (450), ... or x =0, (180), ...

= x=0°225° or 67-5°

18

tan’A + tanA — 2 =0, factorising gives
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R cos(x + a)

An alternative way of writing a cos x # b sin x using one of the formulae listed below

1) Rcos(x+ @ = Rcosxcosa — Rsinxsin a
2 Rcos (x— )

3 Rsin(x+a) = Rsinxcosa + Rcosxsin«

Rcosxcos o + Rsinxsin a

4) Rsin(x—a) = Rsinxcosa — Rcosxsin a

To keep R positive and « acute, we select the formula with corresponding + and — signs.

The technique is the same which ever formula we choose.

Example: Solve the equation 12sinx — 5cosx = 6 for 0°<x < 360°.

Solution:  First re—write in the above form:

notice that the sin x is positive and the cos x is negative so we need formula (4).

Rsin(x—a) = Rsinxcosa — Rcosxsina = 12sinx — 5 cos X

Equating coefficients of sinx, = Rcos a =12 I

Equating coefficients of cosx, = Rsina =5 1

Squaring and adding I and Il = R?cos® « + R?sin® o = 12% + 5
=  R?(cos’ @ +sin*a) = 144 +25 but cos’ o +sin’a =1
= R’=169 = R=#13
But choosing the correct formula means that R is positive = R =+13
Substitutein | = cos a = /3
= a = 22-620...° or 337-379...° or ......
and choosing the correct formula means that « is acute
= a = 22-620...°

= 12 sin X — 5cos x

13 sin(x — 22-620...)

6

= 12sinx — 5cosx = 13sin(x—-22-620...) = 6
sin(x — 22-620...) = %43

X —22:620... = 27-486... or 180-27-486... = 152.514...
x = 50-1° or 175.1°.

To solve 12 sin X — 5cos X

b 4y
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20

Example: Find the maximum value of 12 sinx — 5 cos x and the smallest positive value

of x for which it occurs.

Solution:  From the above example 12sinx — 5cosx = 13 sin(x —22.6).
The maximum value of sin(anything) is 1 and occurs when the angle is 90, 450, 810
etc. i.e. 90 + 360n

= the max value of 13 sin(x —22-6) is 13
when x—22-6 = 90 +360n = x=112.6 + 360n°,

= smallest positive value of x is 112-6°,
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Exponentials and logarithms

Natural logarithms

Definition and graph

e ~2-7183 and logs to base e
are called natural logarithms.
log ¢x is usually written In x.

Note that y=¢€* and y =1Inx
are inverse functions and that
the graph of one is the reflection
of the other in the line y = x.

Graph of y =e®*P 4 ¢,

The graph of y = e* is the graph of
y = e* stretched by a factor of %/, in
the direction of the x-axis.

y =e* isabove y=¢* forx >0,
and below for x <0.

The graph of y = e®*¥ is the graph of

Nojw

y = e” translated through (_

since
.

2x+3=2(x- 3

2

and the graph of y=e®*¥ +4 s that of

0
y = e®*3 translated through (4)
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Eq

22

ax+b _

uations of the form e =p

Example: Solve e**®=5,

Solution:  Take the natural logarithm of each side,

=  InE**® =In5 =X 2x+3=In5
= x= In52—3 = —0-695 to 3 S.F.

Example: Solve In(3x-5) = 4.

Solution:
(i) From the definition of logs  logax=y < x=a’
In(3x-5) = 4
-  3x-5=¢
e* +5
3

= X = = 199 to 3s.F.

OR
(if) Raise both sides to the power of e, .
= " =g (3x-5) = ¢

e’ +5

3

= X = = 199 to 3s.F.

remember that In x is the inverse of &

remember that e*is the inverse of In x

C3 JUNE 2016 SDB



5 Differentiation

Chain rule
If y isa composite function like y = (5x*-7)°
think of y as y = u®, where u = 5x°—7
then the chain rule gives

dy _dy du
dx du dx

= ﬂ=9u8xd—u
dx dx
dy

= 9(5x* —7)® x (10x) = 90x(5x* —7)°.

dx

The rule is very simple, just differentiate the function of u and multiply by Z—U
X

Example: y =V -2x). Find % .
X

Solution: y=V=2x) = (x° —2X)%. Put u= x*—2x

= y=u}/2
L W d
dx du dx
dy -1z du -
= &:%u%x& - -2 x (3x°-2)
2_
. dy 3x° -2

dx 2 —2x)72

Product rule

If y is the product of two functions, u and v, then
dy U dv N du

y=uw = — V—.
dx dx dx

Example: Differentiate y= x* x V(x = 5).

Solution: y= x*xV(x=5) = x*x (X—5)}/2

soput u=x? and v= (x—5)’2
dy dv du

= - 4+ V—
dx dx dx
= X% x %(X—5)7% + (X—S)%x 2X

2

= X + 2X4/X-=5.

24X -5
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Quotient rule

If y is the quotient of two functions, u and v, then

S
y=4 = dy _ " dx dx
Vv dx \Y;

Example: Differentiate y = 22X_3
X +5xX
. _ 2x-3 _ -2
Solution: 'y = — : soput u=2x-3 and v=x"+5x
X +5X
du dv
dy _ Tdx  Cx
— A o, S .
dx v?

(x> +5x)x2 — (2x—=3)x(2x+5)

(x? +5x)°
_ 2x24+10x — (4x*+4x-15)  -2x*+6x+15
(x* +5x)° (x?* +5x)°
Example: Ify= oz find 22 i ingle algebraic fraction i
xample: y= Nrc ind —"", expressing your answer as a single algebraic fraction in
its simplest form.
] 3x—2
Solution: y = N
(x— 1)z
dy (x—-1)7x3 - 3x—2) xix-17
- _— =
dx x—1
1 (3x—2)
N d_y B (x— 1)2 X3 — m
dx x—1
1 (3x —2)
dy _ (=12 x3 = 50w Gt Vi
- dx x—1 2(x — 1)"2
dy 6(x—1)— (3x—2) 6x —6— 3x +2
= —_— = =
dx 2(x — 1) 2(x — 1)/
dy 3x —4
— 2L -

dx B 2(x — 1)3/2

24 C3 JUNE 2016 SDB



Derivatives of e*and logex =In x.

— X dy _ x
y=¢ = dx—e
d 1
y = Inx - Z2==
dx x
d 1 _ 1
y=Inkkx = y=Ink+ Inx = Z=0+-==:
dx x x
_ dy _ 1 _ l . .
or y=Inkx = prooiaiwe Xk = " using the chain rule
dy 1 k
= Inx* = = klInx = 2 = kx= = —
y y dx X X

Example: Find the derivative of f (x) =x®— 5e* at the point where x = 2.

Solution:  f (x) = x> — 5e*

=  f'(x)= 3x*- 5¢°

=  f/(2)= 12 - 5¢* = -24.9
Example: Differentiate the function f(X)= In3x — Inx°
Solution: f(X) = In3x — Inx’> =In3 +Inx — 5Inx = In3 = 4Inx

-4
= f'(x)= —
X
or we can use the chain rule

= f'(X):ix3—i5x5X4=_—4
3X X X

Example: Find the derivative of  f (x) = log 10 3x.

. In3x
Solution: f(x) = log 103x = 1o using change of base formula
n
In3 + Inx _ In3 N In x
In10 In10 In10
M 1
= f'")=0 + —=X— = .
In10 xIn10
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Example: y = e*. Find ﬂ
dx

Solution: y = €',  where u=x

., O _dy du
dx du dx

= ﬂ e'x— = g x 2x = 2xe*
dx X

Example: y= In7x%. Find %
X

Solution: y=Inu, where u=7x’

., Wy _dy du
dx du dx
= ﬂ=1xd—u = 1 x21x% = g
dx u dx 7x° X
dy _ 1
dx %
y
) ) dy dx _ dy _ 1
Using the chain rule we can see that el 1, = - @&
y
Example: x =sin? 3y. FindZ—i’ .
Solution:  First find Z—i as this is easier.
Z—i = 2sin 3y cos 3y x 3 = 6 sin 3y cos 3y
ax 7,  6sin3ycos3y  3sin6y 3

Derivative of a*
y=a" = Z—z=axlna
Proof:
y=a'
= Iny =Ina" =xlna

1 dy

= S i Ina
d

= Z=ylna=alna
dx

You should know this proof.
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. _X+2 & dy
Example: If y=5""7 find -

Solution 1: y = 5*x52=25 x 5

— ¥ -925x5n5
dx

Solution2: y =5'"2 =5"
=  Zogipnsx% = 5425
dx dx

. _ax? g dy
Example: y =7*", find ™

. . du
using the chain rule and o 1

. d d 2
Solution: y=7" = 2 =7"In7 ><£ = 7%°In 7 x 2x using the chain rule

dx

Trigonometric differentiation

x must be in RADIANS when differentiating trigonometric functions.

f(x) f'(x) important formulae
sin X COS X
COS X —sin x sinx + cos®x=1
tan x sec” x
sec x sec x tan x tan’x +1 = sec?x
cot x — cosec’ x

COSec X — COSEC X COt X 1 + cot’x = cosec” X

Chain rule — further examples

Example: y=sin*x. Find Y
dx
Solution: y =sin*x. Put u= sinx
= y=u
dy _dy du
dx du dx
= Y _ 4u3><d—u = 4sin®Xx x cosX.
dx dx
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Example: y = e*"*. Find Y

dx
Solution: 'y =€,  where u=sinx
. O _dy du
dx du dx
= ﬂ:e“xd—u = "X x cosSX = COSX x €
dx dx

Example: y= In(secx). Find %
X

Solution: y=Inu, where u=secx

_, W _dy du
dx du dx
dy 1 du

— — = Zx— = xsecxtanx = tanx.
dx u dx sec X

sin X

Trigonometry and the product and quotient rules

Example: Differentiate y = x* x cosec 3x.

Solution: ﬂ = av + vd—u

u PR
dx dx dx

y = X% x cosec 3x
Put u=x*> and v = cosec 3x

dy
dx

x* x (- 3cosec 3x cot 3x) + cosec 3x x 2x

— 3x% cosec 3x cot 3x + 2X COSec 3x.

28
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Example: Differentiate y = tan 2x

7x3
du dv
u dy _ Vax Y
Solution: 'y = — = A X g X
v dx v
y = tan 2x
7x3

Put u=tan2x and v=7x

dy  7x®x2sec’2x - tan2xx21x

2

- =

dx (7x%)?

dy  14x%sec?2x — 21x®tan2x
= — =

dx 49x°

dy  2xsec’2x — 3tan2x
j— —_— =

dx 7x*
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6 Numerical methods

Locating the roots of f(x) =0

A quick sketch of the graph of y =1 (x) can give a rough
idea of the roots of f (x) =0.

If y=1(x) changes sign between x=a and x=Db and if y=Hx)
f (x) is continuous in this region then aroot of f(x) =0
lies between x =a and x =Dh. x

\y E
The iteration X,.+1=9(Xn)

Example:

(a) Show that a root, ¢, of the equation f(x) = xX*-=8x—7=0 lies between 3 and 4.
(b) Show that the equation x*—8x—7 =0 can be re—arranged as x = 3/8x + 7 .

(c) Starting with x; = 3, use the iteration x, +1 = 3/8X, + 7 to find the first four
iterations for x.

(d) Show that your value of x4 is correct to 3 S.F.

Solution:
(@ f(3) =27-24-7=-4, and f(4) = 64-32-7 = +25
Thus f(x) changessignand f(x) iscontinuous = there is aroot between 3 and 4.

(b) xX*-8-7=0 = X =8+7 = x=38x+7.

(c) X1 = 3
= X = ¥8x3+7 = = 3.14138065239
= X3 = 3-17912997899
= x4 = 3-18905898325

(d) X4=3-19 to 3 s.F.
f(3-185)=3-185° - 8x3185-7= - 017 ...
f(3-195) = 3-195° - 8x3195-7 = + 005 ...
f (x) changessignand f(x) iscontinuous
= there is a root in the interval [3-185, 3-195]
= a=3-19 to 3s.F.
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Conditions for convergence

If an equation is rearranged as x = g(x) and if thereisaroot X = «

then the iteration X,+1 = g(x), starting with an approximation near x = o

Q) will converge if -1<g'(a)<1

y y
y=x
y=g(x)
X X
X, Xy Xz X4 X, X Xs Xz \
(@) will converge without oscillating (b) will oscillate and converge
if 0<g'(a)<1, if -1<g'(a)<0,
@i)  will diverge if y
g'(@)<-1 or g'(e)>1.
y=g(x)
y=X
i x
X4 Xy X3 Xg
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7  Appendix
Derivatives of sin x and cos X
. sinh _
llmh_>0 (T) =1 C
OAB is a sector of a circle with centre O and radius r. A
The area of the triangle OAB, % r’sin h, r rtan h
is less than the area of the sector OAB, % r’h
) h
= Lrsinh< i o
2. 2 r B
st I
h
1 2
Also the area of the sector OAB, ST h rtan h

is less than the area of the triangle OBC, % r’ tan h,

1 1 sinh
= Er2h< Erztanh = cosh<—— ... T

sinh

land Il = cosh < <1

and as h— 0, }lirr(l)cosh= 1

sinh sinh
:>1<lim< )<1 :>1im( >=1
-0\ h h—0\ h

h must be in RADIANS, as the formula for the area of sector is only true if h is in radians.

Alternative formula for derivative

32

y
The gradient of the curve at P will be nearly p Rm
equal to the gradient of the line QR. QA s
QM =f(x—h) and RN =f (x + h) i
= RS=f(x+h)-f(x-h) i
QS = MN = 2h |
Cfx- M N
— gradient of QR = L&+ S (x-h) / l l "
2h x-h x x+h

and as h — 0, the gradient of QR — f'(x) =
gradient of the curve at P

limit f(x+h)-f(x-h)
h->0 2h

= f'(x)=

limit f(x+h)—f(x)
h—0 h

In C2 we used the formula f’(x) =
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Derivatives of sin x and cos x

— i ity —  limit fGx+h)-f(x-h)
f(x) =sinx and f'(x)= PRl -

, _ limit Sin (x + h) -sin (x - h)
= f (X) T h-oo0 2h

_  limit (sinxcosh +cosxsinh) — (sinxcosh—cosxsinh)

h—-0 2h
_  limit 2cosxsinh
h-0 2h
—  limit sinh
= COS X
h—-0 h
limit (sinh
but — ( ) =1
h—0 h

iy = & e -
= f'(x) = dx(smx) = COS X
Similarly, we can show that %(cosx) = —sinx

X must be in RADIANS.
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