1 Either prove or disprove each of the following statements.
(i) 'If m and n are consecutive odd numbers, then at least one of m and n is a prime number.'
(ii) 'If m and n are consecutive even numbers, then $m n$ is divisible by 8 .'

2 (i) Disprove the following statement:

$$
3^{n}+2 \text { is prime for all integers } n \geqslant 0
$$

(ii) Prove that no number of the form 3^{n} (where n is a positive integer) has 5 as its final digit.

3 (i) Factorise fully $n^{3}-n$.
(ii) Hence prove that, if n is an integer, $n^{3}-n$ is divisible by 6 .

4 Prove or disprove the following statement:
'No cube of an integer has 2 as its units digit.'

5 Use the triangle in Fig. 4 to prove that $\sin ^{2} \theta+\cos ^{2} \theta=1$. For what values of θ is this proof valid?

Fig. 4
(ii) Hence prove that if n is a positive integer then $3^{2 n}-1$ is divisible by 8 .

7 State whether the following statements are true or false; if false, provide a counterexample.
(i) If a is rational and b is rational, then $a+b$ is rational.
(ii) If a is rational and b is irrational, then $a+b$ is irrational.
(iii) If a is irrational and b is irrational, then $a+b$ is irrational.

8 (i) Disprove the following statement.

$$
\begin{equation*}
\text { 'If } p>q, \text { then } \frac{1}{p}<\frac{1}{q} \tag{2}
\end{equation*}
$$

(ii) State a condition on p and q so that the statement is true.

9 (i) Show that

$$
\begin{align*}
& \text { (A) }(x-y)\left(x^{2}+x y+y^{2}\right)=x^{3}-y^{3} \\
& \text { (B) }\left(x+\frac{1}{2} y\right)^{2}+\frac{3}{4} y^{2}=x^{2}+x y+y^{2} \tag{4}
\end{align*}
$$

(ii) Hence prove that, for all real numbers x and y, if $x>y$ then $x^{3}>y^{3}$.
(i) Verify the following statement:

$$
\begin{equation*}
\text { ' } 2^{p}-1 \text { is a prime number for all prime numbers } p \text { less than } 11 \text { '. } \tag{2}
\end{equation*}
$$

(ii) Calculate 23×89, and hence disprove this statement:

$$
{ }^{\prime} 2^{p}-1 \text { is a prime number for all prime numbers } p \text { '. }
$$

11 Use the method of exhaustion to prove the following result.

$$
\text { No } 1 \text { - or } 2 \text {-digit perfect square ends in } 2,3,7 \text { or } 8
$$

State a generalisation of this result.

12 Prove that the following statement is false.
For all integers n greater than or equal to $1, n^{2}+3 n+1$ is a prime number.

13 Positive integers a, b and c are said to form a Pythagorean triple if $a^{2}+b^{2}=c^{2}$.
(i) Given that t is an integer greater than 1 , show that $2 t, t^{2}-1$ and $t^{2}+1$ form a Pythagorean triple.
(ii) The two smallest integers of a Pythagorean triple are 20 and 21. Find the third integer.

Use this triple to show that not all Pythagorean triples can be expressed in the form $2 t, t^{2}-1$ and $t^{2}+1$.

