1	(i)	False e.g. neither 25 and 27 are prime as 25 is div by 5 and 27 by 3	B1 B1 [2]	correct counter-example identified justified correctly	Need not explicitly say 'false'
1	(ii)	True: one has factor of 2, the other 4, so product must have factor of 8.	B2 [2]	or algebraic proofs: e.g. $2n(2n+2) = 4n(n+1) = 4 \times \text{even} \times \text{odd no so div by 8}$	B1 for stating with justification div by 4 e.g. both even, or from $4(n^2 + n)$ or $4pq$

Q	Question		Answer	Marks		Guidance
2	(i)	(i) $3^5 + 2 = 245$ [which is not prime] M1		M1	Attempt to find counter- example	If A0, allow M1 for $3^n + 2$ correctly
				A1	correct counter-example identified	evaluated for 3 values of <i>n</i>
				[2]		
2	(ii)		$(3^0 = 1), 3^1 = 3, 3^2 = 9, 3^3 = 27, 3^4 = 81, \dots$	M1	Evaluate 3^n for $n = 0$ to 4 or 1 to 5	allow just final digit written
			so units digits cycle through 1, 3, 9, 7, 1, 3, so cannot be a '5'.	A1		
			3^n is not divisible by 5	B1		
			all numbers ending in '5' are divisible by 5.	B1		
			so its last digit cannot be a '5'		must state conclusion for B2	
				[2]		

3	(i)	$n^3 - n = n(n^2 - 1)$	B1	two correct factors
		= n(n-1)(n+1)	B1	
			[2]	
3	(ii)	n-1, n and $n+1$ are consecutive integers	B1	
		so at least one is even, and one is div by 3	B1	
		$[\Rightarrow n^3 - n \text{ is div by 6}]$	[2]	

4	Cubes are 1, 8, 27, 64, 125, 216, 343, 512	M1	Attempt to find counter example	if no counter-example found, award M1 if at
	[so false as] $8^3 = 512$	A1	counter-example identified (e.g.	least 3 cubes are calculated.
			underlining, circling)	condone not explicitly stating statement is
			[counter-examples all have 8 as	false
		[2]	units digit]	

5	$\sin \theta = BC/AC, \cos \theta = AB/AC$	M1	or a/b , c/b	allow o/h, a/h etc if clearly marked on triangle.
	$AB^2 + BC^2 = AC^2$		condone taking $AC = 1$	but must be stated
\Rightarrow	$(AB/AC)^2 + (BC/AC)^2 = 1$			
\Rightarrow	$\cos^2\theta + \sin^2\theta = 1$	A1	Must use Pythagoras	arguing backwards unless \Leftrightarrow used A0
	Valid for $(0^{\circ} <) \theta < 90^{\circ}$	B1	allow \leq , or 'between 0 and 90' or < 90	
		[3]	allow $< \pi/2$ or 'acute'	

6 (i) $(3^n + 1)(3^n - 1) = (3^n)^2 - 1$ or $3^{2n} - 1$	B1 [1]	mark final answer	or $9^n - 1$; penalise 3^{n^2} if it looks like 3 to the power n^2 .
(ii) 3^n is odd $\Rightarrow 3^n + 1$ and $3^n - 1$ both even As consecutive even nos, one must be divisible by 4, so product is divisible by 8.	M1 M1 A1 [3]	3^n is odd $\Rightarrow 3^n + 1$ and $3^n - 1$ both even completion	Induction: If true for n , $3^{2n} - 1 = 8k$, so $3^{2n} = 1 + 8k$, M1 $3^{2(n+1)} - 1 = 9 \times (8k + 1) - 1 = 72k + 8 = 8(9k + 1)$ so div by 8. A1 When $n = 1$, $3^2 - 1 = 8$ div by 8, true A1(or similar with 9^n)

7 (<i>A</i>) Tr e, (<i>B</i>) True, (C) False	B2,1,0	
Counterexample, e.g. $\sqrt{2} + (-\sqrt{2}) = 0$	B 1	
	[3]	

8(i) e.g $p = 1$ and $q = -2$ $p > q$ but $1/p = 1 > 1/q = -\frac{1}{2}$	M1 E1 [2]	stating values of p, q with $p \ge 0$ and $q \le 0$ (but not p = q = 0) showing that $1/p > 1/q$ - if 0 used, must state that 1/0 is undefined or infinite
(ii) Both p and q positive (or negative)	B1 [1]	or $q > 0$, 'positive integers'

9(i)	(A) $(x - y)(x^{2} + xy + y^{2})$ - $x^{3} + x^{2}y + xy^{2} - yx^{2} - xy^{2} - y^{3}$	M1	expanding - allow tabulation
	$= x^{3} + x^$	E1	www
	(B) $x + \frac{1}{2}y)^2 + \frac{3}{4}y^2$ - $x^2 + xy + \frac{1}{2}y^2 + \frac{3}{4}y^2$	M1	$(x + \frac{1}{2}y)^2 = x^2 + \frac{1}{2}xy + \frac{1}{2}xy + \frac{1}{4}y^2$ o.e.
	= x + xy + 74 y + 74 y = $x^{2} + xy + y^{2}$	E1 [4]	cao www
(ii)	$x^{3} - y^{3} = (x - y)[(x + \frac{1}{2}y)^{2} + \frac{3}{4}y^{2}]$	M1	substituting results of (i)
	$(x + \frac{1}{2}y)^2 + \frac{3}{4}y^2 > 0$ [as squares ≥ 0]	M1	
\Rightarrow \Rightarrow	if $x - y > 0$ then $x^3 - y^3 > 0$ if $x > y$ then $x^3 > y^3 *$	E1 [3]	

10(i) $p = 2, 2^{p} - 1 = 3$, prime $p = 3, 2^{p} - 1 = 7$, prime $p = 5, 2^{p} - 1 = 31$, prime $p = 7, 2^{p} - 1 = 127$, prime	M1 E1 [2]	Testing at least one prime testing all 4 primes (correctly) Must comment on answers being prime (allow ticks) Testing $p = 1$ is E0
(ii) $23 \times 89 = 2047 = 2^{11} - 1$ 11 is prime, 2047 is not So statement is false.	M1 E1 [2]	$2^{11} - 1$ must state or imply that 11 is prime (<i>p</i> = 11 is sufficient)

11 Perfect squares are		
0, 1, 4, 9, 16, 25, 36, 49, 64, 81 none of which end in a 2, 3, 7 or 8.	M1 E1	Listing all 1- and 2- digit squares. Condone absence of 0^2 , and listing squares of 2 digit nos (i.e. $0^2 - 19^2$)
Generalisation: no perfect squares end in a 2, 3, 7 or 8.	B1 [3]	For extending result to include further square numbers.

12	$n = 1, n^2 + 3n + 1 = 5$ prime $n = 2, n^2 + 3n + 1 = 11$ prime $n = 3, n^2 + 3n + 1 = 19$ prime	M1	One or more trials shown
	$n = 4, n^2 + 3n + 1 = 29$ prime $n = 5, n^2 + 3n + 1 = 41$ prime $n = 6, n^2 + 3n + 1 = 55$ not prime so statement is false	E1 [2]	finding a counter-example – must state that it is not prime.

13(i) $a^2 + b^2 = (2t)^2 + (t^2 - 1)^2$ = $4t^2 + t^4 - 2t^2 + 1$ = $t^4 + 2t^2 + 1$ = $(t^2 + 1)^2 = c^2$	M1 M1 E1	substituting for <i>a</i> , <i>b</i> and <i>c</i> in terms of <i>t</i> Expanding brackets correctly www
(ii) $c = \sqrt{(20^2 + 21^2)} = 29$ For example: $2t = 20 \Rightarrow t = 10$ $\Rightarrow t^2 - 1 = 99$ which is not consistent with 21	B1 M1 E1	Attempt to find <i>t</i> Any valid argument or E2 'none of 20, 21, 29 differ by two'.