$\mathbf{1}$	(i)		False e.g. neither 25 and 27 are prime as 25 is div by 5 and 27 by 3	B1 B1 $[2]$	correct counter-example identified justified correctly	Need not explicitly say 'false'
$\mathbf{1}$	(ii)	True: one has factor of 2, the other 4, so product must have factor of 8.	B2	or algebraic proofs: e.g. $2 n(2 n+2)=$ $4 n(n+1)=4 \times$ even \times odd no so div by 8	B1 for stating with justification div by 4 e.g. both even, or from $4\left(n^{2}+n\right)$ or $4 p q$	

Question		Answer	Marks	Guidance	
2	(i)	$3^{5}+2=245$ [which is not prime]	M1 A1 [2]	Attempt to find counterexample correct counter-example identified	If A0, allow M1 for $3^{n}+2$ correctly evaluated for 3 values of n
2	(ii)	$\left(3^{0}=1\right), 3^{1}=3,3^{2}=9,3^{3}=27,3^{4}=81, \ldots$ so units digits cycle through $1,3,9,7,1,3$, ... so cannot be a ' 5 '. OR 3^{n} is not divisible by 5 all numbers ending in ' 5 ' are divisible by 5 . so its last digit cannot be a ' 5 '	M1 A1 B1 B1 [2]	Evaluate 3^{n} for $n=0$ to 4 or 1 to 5 must state conclusion for B2	allow just final digit written

3	(i)	$\begin{aligned} n^{3}-n & =n\left(n^{2}-1\right) \\ & =n(n-1)(n+1) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { [2] } \end{aligned}$	two correct factors
3	(ii)	$n-1, n$ and $n+1$ are consecutive integers so at least one is even, and one is div by 3 [$\Rightarrow \quad n^{3}-n$ is div by 6]	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { [2] } \\ & \hline \end{aligned}$	

| 4 | | Cubes are 1, 8, 27, 64, 125, 216, 343, 512
 [so false as] $8^{3}=512$ | M1
 A1 | Attempt to find counter example
 counter-example identified (e.g.
 underlining, circling)
 [counter-examples all have 8 as
 units digit] | if no counter-example found, award M1 if at
 least 3 cubes are calculated.
 condone not explicitly stating statement is
 false |
| :--- | :--- | :--- | :--- | :---: | :--- | :--- |

5	$\begin{aligned} & \sin \theta=\mathrm{BC} / \mathrm{AC}, \cos \theta=\mathrm{AB} / \mathrm{AC} \\ & \mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2} \end{aligned}$	M1	or $a / b, c / b$ condone taking AC = 1	allow $\mathrm{o} / \mathrm{h}, \mathrm{a} / \mathrm{h}$ etc if clearly marked on triangle. but must be stated arguing backwards unless \Leftrightarrow used A0
	$(\mathrm{AB} / \mathrm{AC})^{2}+(\mathrm{BC} / \mathrm{AC})^{2}=1$			
\Rightarrow	$\cos ^{2} \theta+\sin ^{2} \theta=1$	A1	Must use Pythagoras	
	Valid for ($\left.0^{\circ}<\right) \theta<90^{\circ}$	$\begin{aligned} & \text { B1 } \\ & {[3]} \end{aligned}$	allow \leq, or 'between 0 and 90 ' or <90 allow $<\pi / 2$ or 'acute'	

6 (i) $\left(3^{n}+1\right)\left(3^{n}-1\right)=\left(3^{n}\right)^{2}-1$ or $3^{2 n}-1$	$\begin{aligned} & \hline \text { B1 } \\ & {[1]} \end{aligned}$	mark final answer	or $9^{n}-1$; penalise $3^{n^{2}}$ if it looks like 3 to the power n^{2}.
(ii) 3^{n} is odd $\Rightarrow 3^{n}+1$ and $3^{n}-1$ both even As consecutive even nos, one must be divisible by 4 , so product is divisible by 8 .	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	$\begin{aligned} & 3^{n} \text { is odd } \\ & \Rightarrow 3^{n}+1 \text { and } 3^{n}-1 \text { both even } \\ & \text { completion } \end{aligned}$	Induction: If true for $n, 3^{2 n}-1=8 k$, so $3^{2 n}=1+8 k$, M1 $3^{2(n+1)}-1=9 \times(8 k+1)-1=72 k+8=8(9 k+1)$ so div by 8 . A1 When $n=1,3^{2}-1=8$ div by 8 , true A1(or similar with 9^{n})

(A) Tr e , (B) True , (C) False	B2,1,0
Counterexample, e.g. $\sqrt{2}+(-\sqrt{ } 2)=0$	B1
	$[3]$

8(i) e.g $p=1$ and $q=-2$	M1	stating values of p, q with $p \geq 0$ and $q \leq 0$ (but not p $=q=0$ showing that $1 / p>1 / q-$ if 0 used, must state that $p>q$ but $1 / p=1>1 / q=-1 / 2$
[2]	$1 / 0$ is undefined or infinite	
(ii) Both p and q positive (or negative)	B1	or $q>0$, 'positive integers'
$[1]$		

9(i) $\text { (A) } \begin{aligned} &(x-y)\left(x^{2}+x y+y^{2}\right) \\ &=x^{3}+x^{2} y+x y^{2}-y x^{2}-x y^{2}-y^{3} \\ &=x^{3}-y^{3} * \end{aligned}$ $\text { (B) } \begin{aligned} & x+1 / 2 y)^{2}+3 / 4 y^{2} \\ = & x^{2}+x y+1 / 4 y^{2}+3 / 4 y^{2} \\ = & x^{2}+x y+y^{2} \end{aligned}$	M1 E1 M1 E1 [4]	expanding - allow tabulation www $(x+1 / 2 y)^{2}=x^{2}+1 / 2 x y+1 / 2 x y+1 / 4 y^{2} \text { o.e. }$ cao www
$\begin{aligned} \text { (ii) } & x^{3}-y^{3}=(x-y)\left[(x+1 / 2 y)^{2}+3 / 4 y^{2}\right] \\ & \left.(x+1 / 2 y)^{2}+3 / 4 y^{2}>0 \text { [as squares } \geq 0\right] \\ \Rightarrow & \text { if } x-y>0 \text { then } x^{3}-y^{3}>0 \\ \Rightarrow & \text { if } x>y \text { then } x^{3}>y^{3} * \end{aligned}$	M1 M1 E1 [3]	substituting results of (i)

$\mathbf{1 0 (i) ~}$$p=2,2^{p}-1=3$, prime $p=3,2^{p}-1=7$, prime $p=5,2^{p}-1=31$, prime $p=7,2^{p}-1=127$, prime	M1	Testing at least one prime
	E1	testing all 4 primes (correctly)
Must comment on answers being prime (allow ticks)		
Testing $p=1$ is E0		

11 Perfect squares are

$0,1,4,9,16,25,36,49,64,81$
none of which end in a $2,3,7$ or 8 .
Generalisation: no perfect squares end in a 2, 3, 7 or 8 .

Listing all 1- and 2- digit squares. Condone absence of 0^{2}, and listing squares of 2 digit nos (i.e. $0^{2}-19^{2}$)

For extending result to include further square numbers.

$$
12 \quad \begin{aligned}
& n=1, n^{2}+3 n+1=5 \text { prime } \\
& n=2, n^{2}+3 n+1=11 \text { prime } \\
& n=3, n^{2}+3 n+1=19 \text { prime } \\
& n=4, n^{2}+3 n+1=29 \text { prime } \\
& n=5, n^{2}+3 n+1=41 \text { prime } \\
& n=6, n^{2}+3 n+1=55 \text { not prime } \\
& \text { so statement is false }
\end{aligned}
$$

M1	One or more trials shown
E1	finding a counter-example - must state that it is not prime.
$[2]$	

$$
\text { 13(i) } \begin{aligned}
a^{2}+b^{2}= & (2 t)^{2}+\left(t^{2}-1\right)^{2} \\
& =4 t^{2}+t^{4}-2 t^{2}+1 \\
& =t^{4}+2 t^{2}+1 \\
& =\left(t^{2}+1\right)^{2}=c^{2}
\end{aligned}
$$

(ii) $\quad c=\sqrt{ }\left(20^{2}+21^{2}\right)=29$

For example:
$2 t=20 \Rightarrow t=10$
$\Rightarrow \quad t^{2}-1=99$ which is not consistent with 21
substituting for a, b and c in terms of t Expanding brackets correctly www

Attempt to find t Any valid argument or E2 'none of 20, 21, 29 differ by two'.

