1 Solve the equation $e^{2x} - 5e^x = 0$.

[4]

- The temperature T in degrees Celsius of water in a glass t minutes after boiling is modelled by the equation $T = 20 + be^{-kt}$, where b and k are constants. Initially the temperature is $100 \,^{\circ}$ C, and after 5 minutes the temperature is $60 \,^{\circ}$ C.
 - (i) Find b and k.
 - (ii) Find at what time the temperature reaches 50 °C.

[2]

3 A piston can slide inside a tube which is closed at one end and encloses a quantity of gas (see Fig. 4).

Fig. 4

The pressure of the gas in atmospheric units is given by $p = \frac{100}{x}$, where x cm is the distance of the piston from the closed end. At a certain moment, x = 50, and the piston is being pulled away from the closed end at 10 cm per minute. At what rate is the pressure changing at that time? [6]

- A radioactive substance decays exponentially, so that its mass M grams can be modelled by the equation $M = Ae^{-kt}$, where t is the time in years, and A and k are positive constants.
 - (i) An initial mass of 100 grams of the substance decays to 50 grams in 1500 years. Find A and k.
 - (ii) The substance becomes safe when 99% of its initial mass has decayed. Find how long it will take before the substance becomes safe. [3]

	$P = Ae^{bn}$.	
	In the first year (when $n = 1$), the profit was £10 000. In the second year, the profit was	as £16 000.
	(i) Show that $e^b = 1.6$, and find b and A .	[6]
	(ii) What does this model predict the profit to be in the 20th year?	[2]
6	In a chemical reaction, the mass m grams of a chemical after t minutes is modelled by	the equation
	$m = 20 + 30e^{-0.1t}.$	
	(i) Find the initial mass of the chemical.	
	What is the mass of chemical in the long term?	[3]
	(ii) Find the time when the mass is 30 grams.	[3]
	(iii) Sketch the graph of m against t .	[2]
7	The value £V of a car is modelled by the equation $V = Ae^{-kt}$, where t is the age of the car in years and A and k are constants. Its value when new is £10 000, and after 3 years its value is £6000.	
	(i) Find the values of A and k .	[5]
	(ii) Find the age of the car when its value is £2000.	[2]

The profit $\pounds P$ made by a company in its nth year is modelled by the exponential function

5