Edexcel AS and A Level Modular Mathematics

Exercise A, Question 1

Question:

Without using your calculator, write down the sign of the following trigonometric ratios:

- (a) sec 300°
- (b) cosec 190°
- (c) cot 110°
- (d) cot 200°
- (e) sec 95°

Solution:

(a) 300° is in the 4th quadrant

$$\sec 300^{\circ} = \frac{1}{\cos 300^{\circ}}$$

In 4th quadrant cos is +ve, so sec 300° is +ve.

(b) 190° is in the 3rd quadrant

$$\csc 190^{\circ} = \frac{1}{\sin 190^{\circ}}$$

In 3rd quadrant sin is -ve, so cosec 190° is -ve.

(c) 110° is in the 2nd quadrant

$$\cot 110^{\circ} = \frac{1}{\tan 110^{\circ}}$$

In the 2nd quadrant tan is -ve, so cot 110° is -ve.

- (d) 200° is in the 3rd quadrant. tan is +ve in the 3rd quadrant, so cot 200° is+ve.
- (e) 95° is in the 2nd quadrant cos is –ve in the 2nd quadrant, so sec 95° is –ve.

Edexcel AS and A Level Modular Mathematics

Exercise A, Question 2

Question:

Use your calculator to find, to 3 significant figures, the values of

- (a) sec 100°
- (b) cosec 260°
- (c) cosec 280°
- (d) cot 550°
- (e) cot $\frac{4\pi}{3}$
- (f) $\sec 2.4^{c}$
- (g) cosec $\frac{11\pi}{10}$
- (h) $\sec 6^c$

(a)
$$\sec 100^{\circ} = \frac{1}{\cos 100^{\circ}} = -5.76$$

(b)
$$\csc 260^{\circ} = \frac{1}{\sin 260^{\circ}} = -1.02$$

(c)
$$\csc 280^{\circ} = \frac{1}{\sin 280^{\circ}} = -1.02$$

(d)
$$\cot 550^{\circ} = \frac{1}{\tan 550^{\circ}} = 5.67$$

(e)
$$\cot \frac{4\pi}{3} = \frac{1}{\tan \frac{4\pi}{3}} = 0.577$$

(f)
$$\sec 2.4^{c} = \frac{1}{\cos 2.4^{c}} = -1.36$$

(g) cosec
$$\frac{11\pi}{10} = \frac{1}{\sin\frac{11\pi}{10}} = -3.24$$

(h)
$$\sec 6^c = \frac{1}{\cos 6^c} = 1.04$$

Edexcel AS and A Level Modular Mathematics

Exercise A, Question 3

Question:

Find the exact value (in surd form where appropriate) of the following:

- (a) cosec 90°
- (b) cot 135°
- (c) sec 180°
- (d) sec 240°
- (e) cosec 300°
- (f) cot (-45°)
- (g) sec 60°
- (h) cosec (-210°)
- (i) sec 225°
- (j) cot $\frac{4\pi}{3}$
- (k) sec $\frac{11\pi}{6}$
- (1) cosec $\left(-\frac{3\pi}{4}\right)$

- (a) $\csc 90^{\circ} = \frac{1}{\sin 90^{\circ}} = \frac{1}{1} = 1$ (refer to graph of $y = \sin \theta$)
- (b) $\cot 135^{\circ} = \frac{1}{\tan 135^{\circ}} = \frac{1}{-\tan 45^{\circ}} = \frac{1}{-1} = -1$
- (c) $\sec 180^{\circ} = \frac{1}{\cos 180^{\circ}} = \frac{1}{-1} = -1$ (refer to graph of $y = \cos \theta$)
- (d) 240° is in 3rd quadrant

$$\sec 240^{\circ} = \frac{1}{\cos 240^{\circ}} = \frac{1}{-\cos 60^{\circ}} = \frac{1}{-\frac{1}{2}} = -2$$

(e)
$$\csc 300^{\circ} = \frac{1}{\sin 300^{\circ}} = \frac{1}{-\sin 60^{\circ}} = -\frac{1}{\frac{1}{2}\sqrt{3}} = -\frac{2\sqrt{3}}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}$$

(f) cot
$$(-45^{\circ}) = \frac{1}{\tan(-45^{\circ})} = \frac{1}{-\tan 45^{\circ}} = \frac{1}{-1} = -1$$

(g)
$$\sec 60^{\circ} = \frac{1}{\cos 60^{\circ}} = \frac{1}{\frac{1}{2}} = 2$$

(h) -210 ° is in 2nd quadrant

cosec (
$$-210^{\circ}$$
) = $\frac{1}{\sin(-210^{\circ})}$ = $\frac{1}{\sin 30^{\circ}}$ = $\frac{1}{\frac{1}{2}}$ = 2

(i) 225° is in 3rd quadrant

$$\sec 225^{\circ} = \frac{1}{\cos 225^{\circ}} = \frac{1}{-\cos 45^{\circ}}$$

$$=\frac{1}{-\frac{1}{\sqrt{2}}}=-\sqrt{2}$$

(j) $\frac{4\pi}{3}$ is in 3rd quadrant

$$\cot \frac{4\pi}{3} = \frac{1}{\tan \frac{4\pi}{3}} = \frac{1}{\tan \frac{\pi}{3}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$

(k)
$$\frac{11\pi}{6} = 2\pi - \frac{\pi}{6}$$
 (in 4th quadrant)

$$\sec\frac{11\pi}{6} = \frac{1}{\cos\frac{11\pi}{6}} = \frac{1}{\cos\frac{\pi}{6}} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$$

(1)
$$\csc = \left(-\frac{3\pi}{4}\right) = \frac{1}{\sin\left(-\frac{3\pi}{4}\right)} = \frac{1}{-\sin\frac{\pi}{4}} = \frac{1}{-\frac{1}{\sqrt{2}}} = -\sqrt{2}$$

© Pearson Education Ltd 2008

Edexcel AS and A Level Modular Mathematics

Exercise A, Question 4

Question:

(a) Copy and complete the table, showing values (to 2 decimal places) of $\sec \theta$ for selected values of θ .

θ	0°	30°	45°	60°	70°	80°	85°	95°
$\sec \theta$	1		1.41		A 300-10-20	5.76	11.47	

θ	100°	110°	120°	135°	150°	180°	210°
sec θ	7	-2.92	7500.0	-1.41	NOTE OF THE PARTY		-1.15

(b) Copy and complete the table, showing values (to 2 decimal places) of cosec θ for selected values of θ .

θ	10°	20°	30°	45°	60°	80°	90°	100°	120°	135°	150°	160°	170°
$cosec\theta$				1.41			1		1.15	1.41			

θ	190°	200°	210°	225°	240°	270°	300°	315°	330°	340°	350°	390°
$cosec\theta$		0			-1.15				-2			

(c) Copy and complete the table, showing values (to 2 decimal places) of $\cot \theta$ for selected values of θ .

θ	-90°	-60°	-45°	-30°	-10°	10°	30°	45°	60°
$\cot \theta$	0	-0.58				ř.	1.73	1	0.58

θ	90°	120°	135°	150°	170°	210°	225°	240°	270°
$\cot \theta$		1	-1	5 /	7			0.58	

Solution:

(a) Change sec θ into $\frac{1}{\cos \theta}$ and use your calculator.

θ	0°	30°	45°	60°	70°	80°	85°	95°
$\sec \theta$	1	1.15	1.41	2	2.92	5.76	11.47	-11.47

θ	100°	110°	120°	135°	150°	180°	210°
$\sec \theta$	-5.76	-2.92	-2	-1.41	-1.15	-1	-1.15

(b) Change cosec θ to $\frac{1}{\sin \theta}$ and use your calculator.

θ	10°	20°	30°	45°	60°	80°	90°	100°	120°
$cosec\theta$	5.76	2.92	2	1.41	1.15	1.02	1	1.02	1.15

θ	135°	150°	160°	170°	190°	200°	210°	225°	240°
$\csc \theta$	1.41	2	2.92	5.76	-5.76	-2.92	-2	-1.41	-1.15

θ	270°	300°	315°	330°	340°	350°	390°
cosec θ	-1	-1.15	-1.41	-2	-2.92	-5.76	2

(c) Change cot θ to $\frac{1}{\tan \theta}$ and use your calculator.

θ	-90°	-60°	-45°	-30°	-10°	10°	30°	45°	60°
$\cot \theta$	0	-0.58	-1	-1.73	-5.67	5.67	1.73	1	0.58

θ	90°	120°	135°	150°	170°	210°	225°	240°	270°
$\cot \theta$	0	-0.58	-1	-1.73	-5.67	1.73	1	0.58	0

[©] Pearson Education Ltd 2008

Edexcel AS and A Level Modular Mathematics

Exercise B, Question 1

Question:

- (a) Sketch, in the interval $-540^{\circ} \le \theta \le 540^{\circ}$, the graphs of:
- (i) $\sec \theta$ (ii) $\csc \theta$ (iii) $\cot \theta$
- (b) Write down the range of
- (i) $\sec \theta$ (ii) $\csc \theta$ (iii) $\cot \theta$

(b)(i) (Note the gap in the range) $\sec \theta \le -1$, $\sec \theta \ge 1$ (ii) ($\csc \theta$ also has a gap in the range) $\csc \theta \le -1$, $\csc \theta \ge 1$ (iii) $\cot \theta$ takes all real values, i.e. $\cot \theta \in \mathbb{R}$.

Edexcel AS and A Level Modular Mathematics

Exercise B, Question 2

Question:

- (a) Sketch, on the same set of axes, in the interval $0 \le \theta \le 360^\circ$, the graphs of $y = \sec \theta$ and $y = -\cos \theta$.
- (b) Explain how your graphs show that $\sec \theta = -\cos \theta$ has no solutions.

Solution:

(b) You can see that the graphs of $\sec \theta$ and $-\cos \theta$ do not meet, so $\sec \theta = -\cos \theta$ has no solutions.

Algebraically, the solutions of $\sec \theta = -\cos \theta$

are those of
$$\frac{1}{\cos \theta} = -\cos \theta$$

This requires $\cos^2 \theta = -1$, which is not possible for real θ .

Edexcel AS and A Level Modular Mathematics

Exercise B, Question 3

Question:

(a) Sketch, on the same set of axes, in the interval $0 \le \theta \le 360^{\circ}$, the graphs of $y = \cot \theta$ and $y = \sin 2\theta$.

(b) Deduce the number of solutions of the equation $\cot\theta=\sin2\theta$ in the interval $0 \le \theta \le 360^\circ$.

Solution:

(b) The curves meet at the maxima and minima of $y = \sin 2\theta$, and on the θ -axis at odd integer multiples of 90° .

In the interval 0 \leq θ \leq 360 $^{\circ}$ there are 6 intersections.

So there are 6 solutions of $\cot \theta = \sin 2\theta$, is $0 \le \theta \le 360^{\circ}$.

Edexcel AS and A Level Modular Mathematics

Exercise B, Question 4

Question:

(a) Sketch on separate axes, in the interval $0 \le \theta \le 360^\circ$, the graphs of $y = \tan\theta$ and $y = \cot(\theta + 90^\circ)$.

(b) Hence, state a relationship between $\tan \theta$ and $\cot (\theta + 90^{\circ})$.

Solution:

(b) $y = \cot(\theta + 90^\circ)$ is a reflection in the θ -axis of $y = \tan\theta$, so $\cot(\theta + 90^\circ)$ = $-\tan\theta$

Edexcel AS and A Level Modular Mathematics

Exercise B, Question 5

Question:

- (a) Describe the relationships between the graphs of
- (i) $\tan \left(\theta + \frac{\pi}{2}\right)$ and $\tan \theta$
- (ii) cot $(-\theta)$ and cot θ
- (iii) cosec $\left(\theta + \frac{\pi}{4}\right)$ and cosec θ
- (iv) $\sec \left(\theta \frac{\pi}{4} \right)$ and $\sec \theta$
- (b) By considering the graphs of $\tan \left(\theta + \frac{\pi}{2}\right)$, $\cot \left(-\theta\right)$, $\csc \left(\theta + \frac{\pi}{4}\right)$ and $\sec \left(\theta \frac{\pi}{4}\right)$, state which pairs of functions are equal.

- (a) (i) The graph of tan $\left(\theta + \frac{\pi}{2}\right)$ is the same as that of tan θ translated by $\frac{\pi}{2}$ to the left.
- (ii) The graph of cot $(-\theta)$ is the same as that of cot θ reflected in the y-axis.
- (iii) The graph of cosec $\left(\theta + \frac{\pi}{4}\right)$ is the same as that of cosec θ translated by $\frac{\pi}{4}$ to the left.
- (iv) The graph of sec $\left(\theta \frac{\pi}{4}\right)$ is the same as that of sec θ translated by $\frac{\pi}{4}$ to the right.

(reflect $y = \cot \theta$ in the y-axis)

$$\tan \left(\theta + \frac{\pi}{2}\right) = \cot (-\theta)$$

Edexcel AS and A Level Modular Mathematics

Exercise B, Question 6

Question:

Sketch on separate axes, in the interval $0 \le \theta \le 360^{\circ}$, the graphs of:

(a)
$$y = \sec 2\theta$$

(b)
$$y = -\csc\theta$$

(c)
$$y = 1 + \sec \theta$$

(d)
$$y = cosec (\theta - 30^{\circ})$$

In each case show the coordinates of any maximum and minimum points, and of any points at which the curve meets the axes.

Solution:

(a) A stretch of $y = \sec \theta$ in the θ direction with scale factor $\frac{1}{2}$.

Minimum at $(180^{\circ}, 1)$

Maxima at $(90^{\circ}, -1)$ and $(270^{\circ}, -1)$

(b) Reflection in θ -axis of $y = \csc \theta$.

Minimum at $(270^{\circ}, 1)$

Maximum at $(90^{\circ}, -1)$

(c) Translation of $y = \sec \theta$ by + 1 in the y direction. Maximum at $(180^{\circ}, 0)$

(d) Translation of $y = \csc \theta$ by 30° to the right. Minimum at (120°, 1) Maximum at (300°, -1)

© Pearson Education Ltd 2008

Edexcel AS and A Level Modular Mathematics

Exercise B, Question 7

Question:

Write down the periods of the following functions. Give your answer in terms of π .

- (a) $\sec 3\theta$
- (b) cosec $\frac{1}{2}\theta$
- (c) $2 \cot \theta$
- (d) sec $(-\theta)$

Solution:

(a) The period of sec θ is 2π radians.

 $y = \sec 3\theta$ is a stretch of $y = \sec \theta$ with scale factor $\frac{1}{3}$ in the θ direction.

So period of sec 3θ is $\frac{2\pi}{3}$.

(b) cosec θ has a period of 2π .

cosec $\frac{1}{2}\theta$ is a stretch of cosec θ in the θ direction with scale factor 2.

So period of cosec $\frac{1}{2}\theta$ is 4π .

(c) $\cot \theta$ has a period of π .

2 cot θ is a stretch in the y direction by scale factor 2.

So the periodicity is not affected.

Period of 2 cot θ is π .

(d) sec θ has a period of 2π .

 $\sec(-\theta)$ is a reflection of $\sec\theta$ in y-axis, so periodicity is unchanged.

Period of sec $(-\theta)$ is 2π .

Edexcel AS and A Level Modular Mathematics

Exercise B, Question 8

Question:

- (a) Sketch the graph of $y = 1 + 2 \sec \theta$ in the interval $-\pi \le \theta \le 2\pi$.
- (b) Write down the y-coordinate of points at which the gradient is zero.
- (c) Deduce the maximum and minimum values of $\frac{1}{1+2 \sec \theta}$, and give the smallest positive values of θ at which they occur.

Solution:

- (b) The y coordinates at stationary points are -1 and 3.
- (c) Minimum value of $\frac{1}{1+2 \sec \theta}$ is where $1+2 \sec \theta$ is a maximum.

So minimum value of $\frac{1}{1+2 \sec \theta}$ is $\frac{1}{-1} = -1$

It occurs when $\theta = \pi$ (see diagram) (1st +ve value)

Maximum value of $\frac{1}{1+2 \sec \theta}$ is where $1+2 \sec \theta$ is a minimum.

So maximum value of $\frac{1}{1+2 \sec \theta}$ is $\frac{1}{3}$

It occurs when $\theta = 2\pi$ (1st +ve value)

Edexcel AS and A Level Modular Mathematics

Exercise C, Question 1

Question:

Give solutions to these equations correct to 1 decimal place.

Rewrite the following as powers of sec θ , cosec θ or cot θ :

(a)
$$\frac{1}{\sin^3 \theta}$$

(b)
$$\sqrt{\frac{4}{\tan^6 \theta}}$$

(c)
$$\frac{1}{2\cos^2\theta}$$

(d)
$$\frac{1 - \sin^2 \theta}{\sin^2 \theta}$$

(e)
$$\frac{\sec \theta}{\cos^4 \theta}$$

(f)
$$\sqrt{\csc^3 \theta \cot \theta \sec \theta}$$

(g)
$$\frac{2}{\sqrt{\tan \theta}}$$

(h)
$$\frac{\csc^2 \theta \tan^2 \theta}{\cos \theta}$$

(a)
$$\frac{1}{\sin^3 \theta} = \left(\frac{1}{\sin \theta}\right)^3 = \csc^3 \theta$$

(b)
$$\sqrt{\frac{4}{\tan^6 \theta}} = \frac{2}{\tan^3 \theta} = 2 \times \left(\frac{1}{\tan \theta}\right)^3 = 2 \cot^3 \theta$$

(c)
$$\frac{1}{2\cos^2\theta} = \frac{1}{2} \times \left(\frac{1}{\cos\theta}\right)^2 = \frac{1}{2} \sec^2\theta$$

(d)
$$\frac{1 - \sin^2 \theta}{\sin^2 \theta} = \frac{\cos^2 \theta}{\sin^2 \theta}$$
 (using $\sin^2 \theta + \cos^2 \theta \equiv 1$)

So
$$\frac{1-\sin^2\theta}{\sin^2\theta} = \left(\frac{\cos\theta}{\sin\theta}\right)^2 = \cot^2\theta$$

(e)
$$\frac{\sec \theta}{\cos^4 \theta} = \frac{1}{\cos \theta} \times \frac{1}{\cos^4 \theta} = \frac{1}{\cos^5 \theta} = \left(\frac{1}{\cos \theta}\right)^5 = \sec^5 \theta$$

(f)
$$\sqrt{\csc^3 \theta \cot \theta \sec \theta} = \sqrt{\frac{1}{\sin^3 \theta} \times \frac{\cos \theta}{\sin \theta} \times \frac{1}{\cos \theta}} = \sqrt{\frac{1}{\sin^4 \theta}} =$$

$$\frac{1}{\sin^2 \theta} = \csc^2 \theta$$

(g)
$$\frac{2}{\sqrt{\tan \theta}} = 2 \times \frac{1}{(\tan \theta)^{\frac{1}{2}}} = 2 \cot \frac{1}{2} \theta$$

(h)
$$\frac{\csc^2 \theta \tan^2 \theta}{\cos \theta} = \frac{1}{\sin^2 \theta} \times \frac{\sin^2 \theta}{\cos^2 \theta} \times \frac{1}{\cos \theta} = \left(\frac{1}{\cos \theta}\right)^3 = \sec^3 \theta$$

Edexcel AS and A Level Modular Mathematics

Exercise C, Question 2

Question:

Give solutions to these equations correct to 1 decimal place.

Write down the value(s) of cot *x* in each of the following equations:

(a)
$$5 \sin x = 4 \cos x$$

(b)
$$\tan x = -2$$

(c)
$$3 \frac{\sin x}{\cos x} = \frac{\cos x}{\sin x}$$

Solution:

(a)
$$5 \sin x = 4 \cos x$$

 $\Rightarrow 5 = 4 \frac{\cos x}{\sin x}$ (divide by $\sin x$)

$$\Rightarrow \frac{5}{4} = \cot x$$
 (divide by 4)

(b)
$$\tan x = -2$$

$$\Rightarrow \frac{1}{\tan x} = \frac{1}{-2}$$

$$\Rightarrow$$
 $\cot x = -\frac{1}{2}$

(c)
$$3 \frac{\sin x}{\cos x} = \frac{\cos x}{\sin x}$$

$$\Rightarrow$$
 3 sin² $x = \cos^2 x$ (multiply by sin $x \cos x$)

$$\Rightarrow 3 = \frac{\cos^2 x}{\sin^2 x} \quad \text{(divide by } \sin^2 x\text{)}$$

$$\Rightarrow \left(\begin{array}{c} \frac{\cos x}{\sin x} \end{array}\right)^2 = 3$$

$$\Rightarrow$$
 $\cot^2 x = 3$

$$\Rightarrow$$
 $\cot x = \pm \sqrt{3}$

Edexcel AS and A Level Modular Mathematics

Exercise C, Question 3

Question:

Give solutions to these equations correct to 1 decimal place.

Using the definitions of **sec**, **cosec**, **cot** and **tan** simplify the following expressions:

- (a) $\sin \theta \cot \theta$
- (b) $\tan \theta \cot \theta$
- (c) $\tan 2\theta \csc 2\theta$
- (d) $\cos \theta \sin \theta (\cot \theta + \tan \theta)$
- (e) $\sin^3 x \csc x + \cos^3 x \sec x$
- (f) $\sec A \sec A \sin^2 A$
- (g) $\sec^2 x \cos^5 x + \cot x \csc x \sin^4 x$

(a)
$$\sin \theta \cot \theta = \sin \theta \times \frac{\cos \theta}{\sin \theta} = \cos \theta$$

(b)
$$\tan \theta \cot \theta = \tan \theta \times \frac{1}{\tan \theta} = 1$$

(c)
$$\tan 2\theta \ \csc 2\theta = \frac{\sin 2\theta}{\cos 2\theta} \times \frac{1}{\sin 2\theta} = \frac{1}{\cos 2\theta} = \sec 2\theta$$

(d)
$$\cos \theta \sin \theta \left(\cot \theta + \tan \theta \right) = \cos \theta \sin \theta \left(\frac{\cos \theta}{\sin \theta} + \frac{\sin \theta}{\cos \theta} \right)$$

= $\cos^2 \theta + \sin^2 \theta = 1$

(e)
$$\sin^3 x \csc x + \cos^3 x \sec x = \sin^3 x \times \frac{1}{\sin x} + \cos^3 x \times \frac{1}{\sin x}$$

$$\frac{1}{\cos x} = \sin^2 x + \cos^2 x = 1$$

(f)
$$\sec A - \sec A \sin^2 A$$

 $= \sec A (1 - \sin^2 A)$ (factorise)
 $= \frac{1}{\cos A} \times \cos^2 A$ (using $\sin^2 A + \cos^2 A \equiv 1$)
 $= \cos A$

(g)
$$\sec^2 x \cos^5 x + \cot x \csc x \sin^4 x$$

$$= \frac{1}{\cos^2 x} \times \cos^5 x + \frac{\cos x}{\sin x} \times \frac{1}{\sin x} \times \sin^4 x$$

$$= \cos^3 x + \sin^2 x \cos x$$

$$= \cos x (\cos^2 x + \sin^2 x)$$

$$= \cos x (\operatorname{since} \cos^2 x + \sin^2 x)$$

[©] Pearson Education Ltd 2008

Edexcel AS and A Level Modular Mathematics

Exercise C, Question 4

Question:

Show that

(a)
$$\cos \theta + \sin \theta \tan \theta \equiv \sec \theta$$

(b)
$$\cot \theta + \tan \theta \equiv \csc \theta \sec \theta$$

(c)
$$\csc \theta - \sin \theta \equiv \cos \theta \cot \theta$$

(d)
$$(1 - \cos x)$$
 $(1 + \sec x) \equiv \sin x \tan x$

(e)
$$\frac{\cos x}{1 - \sin x} + \frac{1 - \sin x}{\cos x} \equiv 2 \sec x$$

$$(f) \frac{\cos \theta}{1 + \cot \theta} \equiv \frac{\sin \theta}{1 + \tan \theta}$$

(a) L.H.S.
$$\equiv \cos \theta + \sin \theta \tan \theta$$

 $\equiv \cos \theta + \sin \theta \frac{\sin \theta}{\cos \theta}$
 $\equiv \frac{\cos^2 \theta + \sin^2 \theta}{\cos \theta}$
 $\equiv \frac{1}{\cos \theta}$ (using $\sin^2 \theta + \cos^2 \theta \equiv 1$)
 $\equiv \sec \theta \equiv \text{R.H.S.}$

(b) L.H.S.
$$\equiv \cot \theta + \tan \theta$$

$$\equiv \frac{\cos \theta}{\sin \theta} + \frac{\sin \theta}{\cos \theta}$$

$$\equiv \frac{\cos^2 \theta + \sin^2 \theta}{\sin \theta \cos \theta}$$

$$\equiv \frac{1}{\sin \theta \cos \theta}$$

$$\equiv \frac{1}{\sin \theta} \times \frac{1}{\cos \theta}$$

$$\equiv \csc \theta \sec \theta \equiv \text{R.H.S.}$$

(c) L.H.S.
$$\equiv \csc \theta - \sin \theta$$

 $\equiv \frac{1}{\sin \theta} - \sin \theta$

$$\equiv \frac{1 - \sin^2 \theta}{\sin \theta}$$

$$\equiv \frac{\cos^2 \theta}{\sin \theta}$$

$$\equiv \cos \theta \times \frac{\cos \theta}{\sin \theta}$$

$$\equiv \cos \theta \cot \theta \equiv \text{R.H.S.}$$

(d) L.H.S.
$$\equiv (1 - \cos x) (1 + \sec x)$$

 $\equiv 1 - \cos x + \sec x - \cos x \sec x$ (multiplying out)
 $\equiv \sec x - \cos x$
 $\equiv \frac{1}{\cos x} - \cos x$
 $\equiv \frac{1 - \cos^2 x}{\cos x}$
 $\equiv \frac{\sin^2 x}{\cos x}$
 $\equiv \sin x \times \frac{\sin x}{\cos x}$
 $\equiv \sin x \tan x \equiv \text{R.H.S.}$

(f)

L.H.S.
$$\equiv \frac{\cos \theta}{1 + \cot \theta}$$

$$\equiv \frac{\cos \theta}{1 + \frac{1}{\tan \theta}}$$

$$\equiv \frac{\cos \theta}{\frac{\tan \theta + 1}{\tan \theta}}$$

$$\equiv \frac{\cos \theta \tan \theta}{1 + \tan \theta}$$

$$\equiv \frac{\cos \theta \times \frac{\sin \theta}{\cos \theta}}{1 + \tan \theta}$$

$$\equiv \frac{\sin \theta}{1 + \tan \theta} \equiv \text{R.H.S}$$

Edexcel AS and A Level Modular Mathematics

Exercise C, Question 5

Question:

Solve, for values of θ in the interval $0 \le \theta \le 360^{\circ}$, the following equations. Give your answers to 3 significant figures where necessary.

(a)
$$\sec \theta = \sqrt{2}$$

(b)
$$\csc \theta = -3$$

(c) 5
$$\cot \theta = -2$$

(d)
$$\csc \theta = 2$$

(e)
$$3 \sec^2 \theta - 4 = 0$$

(f)
$$5 \cos \theta = 3 \cot \theta$$

(g)
$$\cot^2 \theta - 8 \tan \theta = 0$$

(h)
$$2 \sin \theta = \csc \theta$$

Solution:

(a)
$$\sec \theta = \sqrt{2}$$

$$\Rightarrow \frac{1}{\cos \theta} = \sqrt{2}$$

$$\Rightarrow$$
 $\cos \theta = \frac{1}{\sqrt{2}}$

Calculator value is $\theta = 45^{\circ}$

 $\cos \theta$ is +ve \Rightarrow θ in 1st and 4th quadrants Solutions are 45°, 315°

(b)
$$\csc \theta = -3$$

$$\Rightarrow \frac{1}{\sin \theta} = -3$$

$$\Rightarrow \sin \theta = -\frac{1}{3}$$

Calculator value is -19.5 $^{\circ}$

$$\sin \theta$$
 is -ve \Rightarrow θ is in 3rd and 4th quadrants

Solutions are 199°, 341° (3 s.f.)

(c)
$$5 \cot \theta = -2$$

$$\Rightarrow$$
 $\cot \theta = -\frac{2}{5}$

$$\Rightarrow$$
 $\tan \theta = -\frac{5}{2}$

Calculator value is -68.2 $^{\circ}$

 $\tan \theta$ is $-\text{ve} \Rightarrow \theta$ is in 2nd and 4th quadrants

Solutions are 112°, 292° (3 s.f.)

(d)
$$\csc \theta = 2$$

$$\Rightarrow \frac{1}{\sin \theta} = 2$$

$$\Rightarrow \sin \theta = \frac{1}{2}$$

 $\sin \theta$ is +ve \Rightarrow θ is in 1st and 2nd quadrants Solutions are 30°, 150°

(e)
$$3 \sec^2 \theta = 4$$

$$\Rightarrow \sec^2 \theta = \frac{4}{3}$$

$$\Rightarrow \cos^2 \theta = \frac{3}{4}$$

$$\Rightarrow$$
 $\cos \theta = \pm \frac{\sqrt{3}}{2}$

Calculator value for $\cos \theta = \frac{\sqrt{3}}{2}$ is 30°

As $\cos \theta$ is \pm , θ is in all four quadrants Solutions are 30°, 150°, 210°, 330°

(f)
$$5 \cos \theta = 3 \cot \theta$$

$$\Rightarrow$$
 5 $\cos \theta = 3 \frac{\cos \theta}{\sin \theta}$

Note Do not cancel $\cos \theta$ on each side. Multiply through by $\sin \theta$.

$$\Rightarrow$$
 5 cos θ sin θ = 3 cos θ

$$\Rightarrow$$
 5 cos θ sin θ – 3 cos θ = 0

$$\Rightarrow$$
 cos θ (5 sin θ – 3) = 0 (factorise)

So
$$\cos \theta = 0$$
 or $\sin \theta = \frac{3}{5}$

Solutions are $(90^{\circ}, 270^{\circ})$, $(36.9^{\circ}, 143^{\circ}) = 36.9^{\circ}, 90^{\circ}, 143^{\circ}, 270^{\circ}$.

(g)
$$\cot^2 \theta - 8 \tan \theta = 0$$

$$\Rightarrow \frac{1}{\tan^2 \theta} - 8 \tan \theta = 0$$

$$\Rightarrow$$
 1 - 8 tan³ $\theta = 0$

$$\Rightarrow$$
 8 tan³ $\theta = 1$

$$\Rightarrow$$
 $\tan^3 \theta = \frac{1}{8}$

$$\Rightarrow$$
 $\tan \theta = \frac{1}{2}$

 $\tan \theta$ is +ve $\Rightarrow \theta$ is in 1st and 3rd quadrants

Calculator value is 26.6°

Solutions are 26.6° and $(180^{\circ} + 26.6^{\circ}) = 26.6^{\circ}$ and 207° (3 s.f.).

(h)
$$2 \sin \theta = \csc \theta$$

$$\Rightarrow$$
 $2 \sin \theta = \frac{1}{\sin \theta}$

$$\Rightarrow \sin^2 \theta = \frac{1}{2}$$

$$\Rightarrow \sin^2 \theta = \frac{1}{2}$$

$$\Rightarrow \sin \theta = \pm \frac{1}{\sqrt{2}}$$

Calculator value for $\sin^{-1} \frac{1}{\sqrt{2}}$ is 45°

Solution are in all four quadrants Solutions are 45°, 135°, 225°, 315°

Edexcel AS and A Level Modular Mathematics

Exercise C, Question 6

Question:

Solve, for values of θ in the interval $-180^{\circ} \le \theta \le 180^{\circ}$, the following equations:

(a)
$$\csc \theta = 1$$

(b)
$$\sec \theta = -3$$

(c)
$$\cot \theta = 3.45$$

(d)
$$2 \csc^2 \theta - 3 \csc \theta = 0$$

(e)
$$\sec \theta = 2 \cos \theta$$

(f)
$$3 \cot \theta = 2 \sin \theta$$

(g)
$$\csc 2\theta = 4$$

(h)
$$2 \cot^2 \theta - \cot \theta - 5 = 0$$

(a)
$$\csc \theta = 1$$

 $\Rightarrow \sin \theta = 1$

$$\Rightarrow$$
 $\theta = 90^{\circ}$

(b)
$$\sec \theta = -3$$

$$\Rightarrow$$
 $\cos \theta = -\frac{1}{3}$

Calculator value for $\cos^{-1}\left(-\frac{1}{3}\right)$ is 109° (3 s.f.)

 $\cos \theta$ is -ve \Rightarrow θ is in 2nd and 3rd quadrants

Solutions are 109° and -109°

[If you are not using the quadrant diagram, answer in this case would be \cos^{-1}

$$\left(-\frac{1}{3}\right)$$
 and $-360^{\circ} + \cos^{-1}\left(-\frac{1}{3}\right)$. See key point on page 84.]

(c)
$$\cot \theta = 3.45$$

$$\Rightarrow \frac{1}{\tan \theta} = 3.45$$

$$\Rightarrow \tan \theta = \frac{1}{3.45} = 0.28985...$$

Calculator value for \tan^{-1} (0.28985...) is 16.16° $\tan \theta$ is +ve $\Rightarrow \theta$ is in 1st and 3rd quadrants

Solutions are 16.2 $^{\circ}$, -180 $^{\circ}$ + 16.2 $^{\circ}$ = 16.2 $^{\circ}$, -164 $^{\circ}$ (3 s.f.)

(d)
$$2 \csc^2 \theta - 3 \csc \theta = 0$$

$$\Rightarrow$$
 cosec θ (2 cosec θ – 3) = 0 (factorise)

$$\Rightarrow$$
 cosec $\theta = 0$ or cosec $\theta = \frac{3}{2}$

$$\Rightarrow$$
 $\sin \theta = \frac{2}{3}$ $\csc \theta = 0$ has no solutions

Calculator value for $\sin^{-1} \frac{2}{3}$ is 41.8°

 θ is in 1st and 2nd quadrants

Solutions are
$$41.8^{\circ}$$
, ($180 - 41.8$) $^{\circ} = 41.8^{\circ}$, 138° (3 s.f.)

(e)
$$\sec \theta = 2 \cos \theta$$

$$\Rightarrow \frac{1}{\cos \theta} = 2 \cos \theta$$

$$\Rightarrow$$
 $\cos^2 \theta = \frac{1}{2}$

$$\Rightarrow$$
 $\cos \theta = \pm \frac{1}{\sqrt{2}}$

Calculator value for $\cos^{-1} \frac{1}{\sqrt{2}}$ is 45°

 θ is in all quadrants, but remember that - 180 $^{\circ}$ $~\leq~\theta~\leq~$ 180 $^{\circ}$ Solutions are $~\pm$ 45 $^{\circ}$, $~\pm$ 135 $^{\circ}$

(f)
$$3 \cot \theta = 2 \sin \theta$$

$$\Rightarrow$$
 3 $\frac{\cos\theta}{\sin\theta} = 2 \sin\theta$

$$\Rightarrow$$
 3 cos $\theta = 2 \sin^2 \theta$

$$\Rightarrow$$
 3 cos $\theta = 2$ (1 - cos² θ) (use sin² $\theta + \cos^2 \theta \equiv 1$)

$$\Rightarrow$$
 2 cos² θ + 3 cos θ - 2 = 0

$$\Rightarrow$$
 $(2 \cos \theta - 1) (\cos \theta + 2) = 0$

$$\Rightarrow$$
 $\cos \theta = \frac{1}{2} \text{ or } \cos \theta = -2$

As $\cos \theta = -2$ has no solutions, $\cos \theta = \frac{1}{2}$

Solutions are \pm 60 $^{\circ}$

(g)
$$\csc 2\theta = 4$$

$$\Rightarrow \sin 2\theta = \frac{1}{4}$$

Remember that $-180^{\circ} \le \theta \le 180^{\circ}$

So
$$-360^{\circ} \leq 2\theta \leq 360^{\circ}$$

Calculator solution for 2θ is $\sin^{-1} \frac{1}{4} = 14.48$ °

 $\sin 2\theta$ is +ve \Rightarrow 2θ is in 1st and 2nd quadrants

$$2\theta = -194.48$$
 ° , -345.52 ° , 14.48 ° , 165.52 ° $\theta = -97.2$ ° , -172.8 ° , 7.24 ° , 82.76 ° $= -173$ ° , -97.2 ° , 7.24 ° , 82.8 ° (3 s.f.)

(h)
$$2 \cot^2 \theta - \cot \theta - 5 = 0$$

As this quadratic in $\cot \theta$ does not factorise, use the quadratic formula

$$\cot \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

(You could change cot θ to $\frac{1}{\tan \theta}$ and work with the quadratic

$$5 \tan^2 \theta + \tan \theta - 2 = 0)$$

So
$$\cot \theta = \frac{1 \pm \sqrt{41}}{4} = -1.3507...$$
 or 1.8507 ...

So
$$\tan \theta = -0.7403...$$
 or 0.5403 ...

The calculator value for $\tan \theta = -0.7403...$ is $\theta = -36.51$ °

Solution are -36.5° , $+143^{\circ}$ (3 s.f.).

The calculator value for $\tan \theta = 0.5403...$ is $\theta = 28.38$ °

Solution are 28.4°, (-180+28.4) $^{\circ}$ Total set of solutions is -152 ° , -36.5 ° , 28.4°, 143° (3 s.f.)

Edexcel AS and A Level Modular Mathematics

Exercise C, Question 7

Question:

Solve the following equations for values of θ in the interval $0 \le \theta \le 2\pi$. Give your answers in terms of π .

(a)
$$\sec \theta = -1$$

(b)
$$\cot \theta = -\sqrt{3}$$

(c) cosec
$$\frac{1}{2}\theta = \frac{2\sqrt{3}}{3}$$

(d)
$$\sec \theta = \sqrt{2} \tan \theta \quad \left(\theta \neq \frac{\pi}{2}, \theta \neq \frac{3\pi}{2} \right)$$

Solution:

(a)
$$\sec \theta = -1$$

 $\Rightarrow \cos \theta = -1$

$$\Rightarrow \theta = \pi$$
 (refer to graph of $y = \cos \theta$)

(b)
$$\cot \theta = -\sqrt{3}$$

$$\Rightarrow$$
 $\tan \theta = -\frac{1}{\sqrt{3}}$

Calculator solution is $-\frac{\pi}{6}$ (you should know that $\tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}$)

 $-\frac{\pi}{6}$ is not in the interval

Solution are $\pi - \frac{\pi}{6}$, $2\pi - \frac{\pi}{6} = \frac{5\pi}{6}$, $\frac{11\pi}{6}$

(c) cosec
$$\frac{1}{2}\theta = \frac{2\sqrt{3}}{3}$$

$$\Rightarrow$$
 $\sin \frac{1}{2}\theta = \frac{3}{2\sqrt{3}} = \frac{\sqrt{3}}{2}$

Remember that $0 \le \theta \le 2\pi$

so
$$0 \leq \frac{1}{2}\theta \leq \pi$$

First solution for $\sin \frac{1}{2}\theta = \frac{\sqrt{3}}{2}$ is $\frac{1}{2}\theta = \frac{\pi}{3}$

So
$$\frac{1}{2}\theta = \frac{\pi}{3}, \frac{2\pi}{3}$$

 $\Rightarrow \theta = \frac{2\pi}{3}, \frac{4\pi}{3}$

(d)
$$\sec \theta = \sqrt{2} \tan \theta$$

$$\Rightarrow \frac{1}{\cos \theta} = \sqrt{2} \frac{\sin \theta}{\cos \theta}$$

$$\Rightarrow 1 = \sqrt{2} \sin \theta \quad (\cos \theta \neq 0)$$

$$\Rightarrow \sin \theta = \frac{1}{\sqrt{2}}$$

Solutions are $\frac{\pi}{4}$, $\frac{3\pi}{4}$

Edexcel AS and A Level Modular Mathematics

Exercise C, Question 8

Question:

In the diagram AB = 6 cm is the diameter of the circle and BT is the tangent to the circle at B. The chord AC is extended to meet this tangent at D and \angle DAB = θ .

- (a) Show that $CD = 6 (\sec \theta \cos \theta)$.
- (b) Given that CD = 16 cm, calculate the length of the chord AC.

Solution:

(a) In right-angled triangle ABD

$$\frac{AB}{AD} = \cos \theta$$

$$\Rightarrow$$
 AD = $\frac{6}{\cos \theta}$ = 6 $\sec \theta$

In right-angled triangle ACB

$$\frac{AC}{AB} = \cos \theta$$

$$\Rightarrow AC = 6 \cos \theta$$

$$DC = AD - AC = 6 \sec \theta - 6 \cos \theta = 6 (\sec \theta - \cos \theta)$$

(b) As
$$16 = 6 \sec \theta - 6 \cos \theta$$

$$\Rightarrow 8 = \frac{3}{\cos \theta} - 3 \cos \theta$$

$$\Rightarrow 8 \cos \theta = 3 - 3 \cos^2 \theta$$

$$\Rightarrow 3 \cos^2 \theta + 8 \cos \theta - 3 = 0$$

$$\Rightarrow (3 \cos \theta - 1) (\cos \theta + 3) = 0$$

$$\Rightarrow \cos \theta = \frac{1}{3} \quad \text{as } \cos \theta \neq -3$$

From (a) AC = 6
$$\cos \theta = 6 \times \frac{1}{3} = 2 \text{ cm}$$

Edexcel AS and A Level Modular Mathematics

Exercise D, Question 1

Question:

Simplify each of the following expressions:

(a)
$$1 + \tan^2 \frac{1}{2}\theta$$

(b)
$$(\sec \theta - 1) (\sec \theta + 1)$$

(c)
$$\tan^2 \theta$$
 ($\csc^2 \theta - 1$)

(d)
$$(\sec^2 \theta - 1) \cot \theta$$

(e)
$$(\csc^2 \theta - \cot^2 \theta)^2$$

(f)
$$2 - \tan^2 \theta + \sec^2 \theta$$

(g)
$$\frac{\tan \theta \sec \theta}{1 + \tan^2 \theta}$$

(h)
$$(1 - \sin^2 \theta)$$
 $(1 + \tan^2 \theta)$

(i)
$$\frac{\csc\theta \cot\theta}{1+\cot^2\theta}$$

(j)
$$(\sec^4 \theta - 2 \sec^2 \theta \tan^2 \theta + \tan^4 \theta)$$

(k)
$$4 \csc^2 2\theta + 4 \csc^2 2\theta \cot^2 2\theta$$

Solution:

(a) Use
$$1 + \tan^2 \theta = \sec^2 \theta$$
 with θ replaced with $\frac{1}{2}\theta$.

$$1 + \tan^2 \left(\frac{1}{2}\theta \right) = \sec^2 \left(\frac{1}{2}\theta \right)$$

(b)
$$(\sec \theta - 1) (\sec \theta + 1)$$
 (multiply out)
= $\sec^2 \theta - 1$
= $(1 + \tan^2 \theta) - 1$

$$= \tan^2 \theta$$

(c)
$$\tan^2 \theta$$
 ($\csc^2 \theta - 1$)

$$= \tan^2 \theta \left[(1 + \cot^2 \theta) - 1 \right]$$

$$= \tan^2 \theta \cot^2 \theta$$

$$= \tan^2 \theta \times \frac{1}{\tan^2 \theta}$$

$$= 1$$

(d)
$$(\sec^2 \theta - 1) \cot \theta$$

 $= \tan^2 \theta \cot \theta$
 $= \tan^2 \theta \times \frac{1}{\tan \theta}$
 $= \tan \theta$

(e)
$$(\csc^2 \theta - \cot^2 \theta)^2$$

= $[(1 + \cot^2 \theta) - \cot^2 \theta]^2$
= 1^2
= 1

(f)
$$2 - \tan^2 \theta + \sec^2 \theta$$

= $2 - \tan^2 \theta + (1 + \tan^2 \theta)$
= $2 - \tan^2 \theta + 1 + \tan^2 \theta$
= 3

$$(g) \frac{\tan \theta \sec \theta}{1 + \tan^2 \theta}$$

$$= \frac{\tan \theta \sec \theta}{\sec^2 \theta}$$

$$= \frac{\tan \theta}{\sec \theta}$$

$$= \tan \theta \cos \theta$$

$$= \frac{\sin \theta}{\cos \theta} \times \cos \theta$$

$$= \sin \theta$$

(h)
$$(1 - \sin^2 \theta)$$
 $(1 + \tan^2 \theta)$
= $\cos^2 \theta \times \sec^2 \theta$

$$= \cos^2 \theta \times \frac{1}{\cos^2 \theta}$$
$$= 1$$

(i)
$$\frac{\csc\theta \cot\theta}{1 + \cot^2\theta}$$

$$= \frac{\csc\theta \cot\theta}{\csc^2\theta}$$

$$= \frac{1}{\csc\theta} \times \cot\theta$$

$$= \frac{\sin\theta}{1} \times \frac{\cos\theta}{\sin\theta}$$

$$= \cos\theta$$

(j)
$$\sec^4 \theta - 2 \sec^2 \theta \tan^2 \theta + \tan^4 \theta$$

= $(\sec^2 \theta - \tan^2 \theta)^2$ (factorise)
= $[(1 + \tan^2 \theta) - \tan^2 \theta]^2$
= 1^2
= 1

(k)
$$4 \operatorname{cosec}^2 2\theta + 4 \operatorname{cosec}^2 2\theta \operatorname{cot}^2 2\theta$$

= $4 \operatorname{cosec}^2 2\theta (1 + \cot^2 2\theta)$
= $4 \operatorname{cosec}^2 2\theta \operatorname{cosec}^2 2\theta$
= $4 \operatorname{cosec}^4 2\theta$

Edexcel AS and A Level Modular Mathematics

Exercise D, Question 2

Question:

Given that $\csc x = \frac{k}{\csc x}$, where k > 1, find, in terms of k, possible values of $\cot x$.

Solution:

$$\csc x = \frac{k}{\csc x}$$

$$\Rightarrow \quad \csc^2 x = k$$

$$\Rightarrow \quad 1 + \cot^2 x = k$$

$$\Rightarrow \quad \cot^2 x = k - 1$$

$$\Rightarrow \quad \cot x = \pm \sqrt{k - 1}$$

Edexcel AS and A Level Modular Mathematics

Exercise D, Question 3

Question:

Given that $\cot \theta = -\sqrt{3}$, and that 90 ° < θ < 180 °, find the exact value of

- (a) $\sin \theta$
- (b) $\cos \theta$

Solution:

(a)
$$\cot \theta = -\sqrt{3}$$
 90 ° < θ < 180 °

$$\Rightarrow 1 + \cot^2 \theta = 1 + 3 = 4$$

$$\Rightarrow$$
 $\csc^2 \theta = 4$

$$\Rightarrow \sin^2 \theta = \frac{1}{4}$$

$$\Rightarrow$$
 $\sin \theta = \frac{1}{2}$ (as θ is in 2nd quadrant, $\sin \theta$ is +ve)

(b) Using
$$\sin^2 \theta + \cos^2 \theta = 1$$

$$\Rightarrow$$
 $\cos^2 \theta = 1 - \sin^2 \theta = 1 - \frac{1}{4} = \frac{3}{4}$

$$\Rightarrow$$
 $\cos \theta = -\frac{\sqrt{3}}{2}$ (as θ is in 2nd quadrant, $\cos \theta$ is -ve)

Edexcel AS and A Level Modular Mathematics

Exercise D, Question 4

Question:

Given that $\tan\theta = \frac{3}{4}$, and that 180 $^{\circ}$ < θ < 270 $^{\circ}$, find the exact value of

- (a) $\sec \theta$
- (b) $\cos \theta$
- (c) $\sin \theta$

Solution:

$$\tan \theta = \frac{3}{4} \quad 180^{\circ} < \theta < 270^{\circ}$$

Draw right-angled triangle where $\tan \theta = \frac{3}{4}$

Using Pythagoras' theorem, x = 5

So
$$\cos \theta = \frac{4}{5}$$
 and $\sin \theta = \frac{3}{5}$

As θ is in 3rd quadrant, both $\sin \theta$ and $\cos \theta$ are –ve.

So
$$\sin \theta = -\frac{3}{5}$$
, $\cos \theta = -\frac{4}{5}$

(a)
$$\sec \theta = \frac{1}{\cos \theta} = -\frac{5}{4}$$

(b)
$$\cos \theta = -\frac{4}{5}$$

(c)
$$\sin \theta = -\frac{3}{5}$$

Edexcel AS and A Level Modular Mathematics

Exercise D, Question 5

Question:

Given that $\cos \theta = \frac{24}{25}$, and that θ is a reflex angle, find the exact value of

- (a) $\tan \theta$
- (b) cosec θ

Solution:

$$\cos \theta = \frac{24}{25}$$
, θ reflex

As $\cos \theta$ is +ve and θ reflex, θ is in the 4th quadrant.

Use right-angled triangle where $\cos \theta = \frac{24}{25}$

Using Pythagoras' theorem,

$$25^{2} = x^{2} + 24^{2}$$

$$\Rightarrow x^{2} = 25^{2} - 24^{2} = 49$$

$$\Rightarrow x = 7$$

So
$$\tan \phi = \frac{7}{24}$$
 and $\sin \phi = \frac{7}{25}$

As θ is in 4th quadrant,

(a)
$$\tan \theta = -\frac{7}{24}$$

(b)
$$\csc \theta = \frac{1}{\sin \theta} = -\frac{1}{\frac{7}{25}} = -\frac{25}{7}$$

Edexcel AS and A Level Modular Mathematics

Exercise D, Question 6

Question:

Prove the following identities:

(a)
$$\sec^4 \theta - \tan^4 \theta \equiv \sec^2 \theta + \tan^2 \theta$$

(b)
$$\csc^2 x - \sin^2 x \equiv \cot^2 x + \cos^2 x$$

(c)
$$\sec^2 A (\cot^2 A - \cos^2 A) \equiv \cot^2 A$$

$$(d) 1 - \cos^2 \theta \equiv (\sec^2 \theta - 1) (1 - \sin^2 \theta)$$

(e)
$$\frac{1 - \tan^2 A}{1 + \tan^2 A} \equiv 1 - 2 \sin^2 A$$

(f)
$$\sec^2 \theta + \csc^2 \theta \equiv \sec^2 \theta \csc^2 \theta$$

(g)
$$\csc A \sec^2 A \equiv \csc A + \tan A \sec A$$

(h)
$$(\sec \theta - \sin \theta)$$
 $(\sec \theta + \sin \theta) \equiv \tan^2 \theta + \cos^2 \theta$

Solution:

(a) L.H.S.
$$\equiv \sec^4 \theta - \tan^4 \theta$$

 $\equiv (\sec^2 \theta - \tan^2 \theta) (\sec^2 \theta + \tan^2 \theta)$ (difference of two squares)
 $\equiv (1) (\sec^2 \theta + \tan^2 \theta)$ (as
 $1 + \tan^2 \theta \equiv \sec^2 \theta \implies \sec^2 \theta - \tan^2 \theta \equiv 1$)
 $\equiv \sec^2 \theta + \tan^2 \theta \equiv R.H.S.$

(b) L.H.S.
$$\equiv \csc^2 x - \sin^2 x$$

 $\equiv (1 + \cot^2 x) - (1 - \cos^2 x)$
 $\equiv 1 + \cot^2 x - 1 + \cos^2 x$
 $\equiv \cot^2 x + \cos^2 x \equiv \text{R.H.S.}$

(c) L.H.S.
$$\equiv \sec^2 A (\cot^2 A - \cos^2 A)$$

$$\equiv \frac{1}{\cos^2 A} \left(\frac{\cos^2 A}{\sin^2 A} - \cos^2 A \right)$$

$$\equiv \frac{1}{\sin^2 A} - 1$$

$$\equiv \csc^2 A - 1 \quad (\text{use } 1 + \cot^2 \theta = \csc^2 \theta)$$

$$\equiv 1 + \cot^2 A - 1$$

$$\equiv \cot^2 A \equiv \text{R.H.S.}$$

(d) R.H.S.
$$\equiv (\sec^2 \theta - 1) (1 - \sin^2 \theta)$$

 $\equiv \tan^2 \theta \times \cos^2 \theta \quad (\text{use } 1 + \tan^2 \theta \equiv \sec^2 \theta \text{ and}$
 $\cos^2 \theta + \sin^2 \theta \equiv 1)$
 $\equiv \frac{\sin^2 \theta}{\cos^2 \theta} \times \cos^2 \theta$
 $\equiv \sin^2 \theta$
 $\equiv 1 - \cos^2 \theta \equiv \text{L.H.S.}$

(e) L.H.S.
$$\equiv \frac{1 - \tan^2 A}{1 + \tan^2 A}$$
$$\equiv \frac{1 - \tan^2 A}{\sec^2 A}$$
$$\equiv \frac{1}{\sec^2 A} (1 - \tan^2 A)$$
$$\equiv \cos^2 A \left(1 - \frac{\sin^2 A}{\cos^2 A}\right)$$
$$\equiv \cos^2 A - \sin^2 A$$
$$\equiv (1 - \sin^2 A) - \sin^2 A$$
$$\equiv 1 - 2 \sin^2 A \equiv \text{R.H.S.}$$

(f) R.H.S.
$$\equiv \sec^2 \theta \csc^2 \theta$$

 $\equiv \sec^2 \theta (1 + \cot^2 \theta)$
 $\equiv \sec^2 \theta + \frac{1}{\cos^2 \theta} \times \frac{\cos^2 \theta}{\sin^2 \theta}$
 $\equiv \sec^2 \theta + \frac{1}{\sin^2 \theta}$
 $\equiv \sec^2 \theta + \csc^2 \theta \equiv \text{L.H.S.}$

(g) L.H.S.
$$\equiv \csc A \sec^2 A$$

$$\equiv \operatorname{cosec} A \left(1 + \tan^2 A \right)$$

$$\equiv \operatorname{cosec} A + \frac{1}{\sin A} \times \frac{\sin^2 A}{\cos^2 A}$$

$$\equiv \operatorname{cosec} A + \frac{\sin A}{\cos^2 A}$$

$$\equiv \operatorname{cosec} A + \frac{\sin A}{\cos A} \times \frac{1}{\cos A}$$

$$\equiv \operatorname{cosec} A + \tan A \operatorname{sec} A \equiv \operatorname{R.H.S.}$$

(h) L.H.S.
$$\equiv (\sec \theta - \sin \theta) (\sec \theta + \sin \theta)$$

 $\equiv \sec^2 \theta - \sin^2 \theta$
 $\equiv (1 + \tan^2 \theta) - (1 - \cos^2 \theta)$
 $\equiv 1 + \tan^2 \theta - 1 + \cos^2 \theta$
 $\equiv \tan^2 \theta + \cos^2 \theta \equiv \text{R.H.S.}$

Edexcel AS and A Level Modular Mathematics

Exercise D, Question 7

Question:

Given that 3 $\tan^2 \theta + 4 \sec^2 \theta = 5$, and that θ is obtuse, find the exact value of $\sin \theta$.

Solution:

$$3 \tan^{2} \theta + 4 \sec^{2} \theta = 5$$

$$\Rightarrow 3 \tan^{2} \theta + 4 (1 + \tan^{2} \theta) = 5$$

$$\Rightarrow 3 \tan^{2} \theta + 4 + 4 \tan^{2} \theta = 5$$

$$\Rightarrow 7 \tan^{2} \theta = 1$$

$$\Rightarrow \tan^{2} \theta = \frac{1}{7}$$

$$\Rightarrow \cot^{2} \theta = 7$$

$$\Rightarrow \csc^{2} \theta - 1 = 7$$

$$\Rightarrow \csc^{2} \theta = 8$$

$$\Rightarrow \sin^{2} \theta = \frac{1}{8}$$

As θ is obtuse (2nd quadrant), so $\sin \theta$ is +ve.

So
$$\sin \theta = \sqrt{\frac{1}{8}} = \frac{1}{2\sqrt{2}} = \frac{\sqrt{2}}{4}$$

Edexcel AS and A Level Modular Mathematics

Exercise D, Question 8

Question:

Giving answers to 3 significant figures where necessary, solve the following equations in the given intervals:

(a)
$$\sec^2 \theta = 3 \tan \theta$$
, $0 \le \theta \le 360^\circ$

(b)
$$\tan^2 \theta - 2 \sec \theta + 1 = 0, -\pi \le \theta \le \pi$$

(c)
$$\csc^2 \theta + 1 = 3 \cot \theta$$
, $-180^{\circ} \le \theta \le 180^{\circ}$

(d)
$$\cot \theta = 1 - \csc^2 \theta$$
, $0 \le \theta \le 2\pi$

(e)
$$3 \sec \frac{1}{2}\theta = 2 \tan^2 \frac{1}{2}\theta$$
, $0 \le \theta \le 360^\circ$

(f)
$$(\sec \theta - \cos \theta)^2 = \tan \theta - \sin^2 \theta, 0 \le \theta \le \pi$$

(g)
$$\tan^2 2\theta = \sec 2\theta - 1$$
, $0 \le \theta \le 180^\circ$

(h)
$$\sec^2 \theta - (1 + \sqrt{3}) \tan \theta + \sqrt{3} = 1, 0 \le \theta \le 2\pi$$

Solution:

(a)
$$\sec^2 \theta = 3 \tan \theta$$
 $0 \le \theta \le 360^\circ$

$$\Rightarrow 1 + \tan^2 \theta = 3 \tan \theta$$

$$\Rightarrow \tan^2 \theta - 3 \tan \theta + 1 = 0$$

$$\tan \theta = \frac{3 \pm \sqrt{5}}{2}$$
 (equation does not factorise).

For
$$\tan \theta = \frac{3 + \sqrt{5}}{2}$$
, calculator value is 69.1°

Solutions are 69.1°, 249°

For $\tan \theta = \frac{3 - \sqrt{5}}{2}$, calculator value is 20.9°

Solutions are 20.9°, 201°

Set of solutions: 20.9°, 69.1°, 201°, 249° (3 s.f.)

(b)
$$\tan^2 \theta - 2 \sec \theta + 1 = 0$$
 $-\pi \le \theta \le \pi$

$$\Rightarrow$$
 $(\sec^2 \theta - 1) - 2 \sec \theta + 1 = 0$

$$\Rightarrow \sec^2 \theta - 2 \sec \theta = 0$$

$$\Rightarrow \sec \theta (\sec \theta - 2) = 0$$

$$\Rightarrow$$
 sec $\theta = 2$ (as sec θ cannot be 0)

$$\Rightarrow$$
 $\cos \theta = \frac{1}{2}$

$$\Rightarrow \theta = -\frac{\pi}{3}, \frac{\pi}{3}$$

(c)
$$\csc^2 \theta + 1 = 3 \cot \theta - 180^\circ \le \theta \le 180^\circ$$

 $\Rightarrow (1 + \cot^2 \theta) + 1 = 3 \cot \theta$
 $\Rightarrow \cot^2 \theta - 3 \cot \theta + 2 = 0$
 $\Rightarrow (\cot \theta - 1) (\cot \theta - 2) = 0$
 $\Rightarrow \cot \theta = 1 \operatorname{or} \cot \theta = 2$
 $\Rightarrow \tan \theta = 1 \operatorname{or} \tan \theta = \frac{1}{2}$

$$\tan \theta = 1 \implies \theta = -135^{\circ}, 45^{\circ}$$

 $\tan \theta = \frac{1}{2} \implies \theta = -153^{\circ}, 26.6^{\circ}$

(d)
$$\cot \theta = 1 - \csc^2 \theta$$
 $0 \le \theta \le 2\pi$
 $\Rightarrow \cot \theta = 1 - (1 + \cot^2 \theta)$
 $\Rightarrow \cot \theta = -\cot^2 \theta$
 $\Rightarrow \cot^2 \theta + \cot \theta = 0$
 $\Rightarrow \cot \theta (\cot \theta + 1) = 0$
 $\Rightarrow \cot \theta = 0 \text{ or } \cot \theta = -1$

For $\cot \theta = 0$ refer to graph: $\theta = \frac{\pi}{2}, \frac{3\pi}{2}$

For $\cot \theta = -1$, $\tan \theta = -1$

So
$$\theta = \frac{3\pi}{4}, \frac{7\pi}{4}$$

Set of solutions: $\frac{\pi}{2}$, $\frac{3\pi}{4}$, $\frac{3\pi}{2}$, $\frac{7\pi}{4}$

(e)
$$3 \sec \frac{1}{2}\theta = 2 \tan^2 \frac{1}{2}\theta$$
 $0 \le \theta \le 360^\circ$
 $\Rightarrow 3 \sec \frac{1}{2}\theta = 2 \left(\sec^2 \frac{1}{2}\theta - 1\right)$ (use $1 + \tan^2 A = \sec^2 A$ with $A = \frac{1}{2}\theta$)
 $\Rightarrow 2 \sec^2 \frac{1}{2}\theta - 3 \sec \frac{1}{2}\theta - 2 = 0$
 $\Rightarrow \left(2 \sec \frac{1}{2}\theta + 1\right) \left(\sec \frac{1}{2}\theta - 2\right) = 0$
 $\Rightarrow \sec \frac{1}{2}\theta = -\frac{1}{2}\operatorname{or} \sec \frac{1}{2}\theta = 2$

Only $\sec \frac{1}{2}\theta = 2$ applies as $\sec A \le -1$ or $\sec A \ge 1$

$$\Rightarrow$$
 $\cos \frac{1}{2}\theta = \frac{1}{2}$

As
$$0 \leq \theta \leq 360^{\circ}$$

so
$$0 \le \frac{1}{2}\theta \le 180^{\circ}$$

Calculator value is 60°

This is the only value in the interval.

So
$$\frac{1}{2}\theta = 60^{\circ}$$

 $\Rightarrow \theta = 120^{\circ}$

(f)
$$(\sec \theta - \cos \theta)^2 = \tan \theta - \sin^2 \theta$$
 $0 \le \theta \le \pi$
 $\Rightarrow \sec^2 \theta - 2 \sec \theta \cos \theta + \cos^2 \theta = \tan \theta - \sin^2 \theta$
 $\Rightarrow \sec^2 \theta - 2 + \cos^2 \theta = \tan \theta - \sin^2 \theta$ $\left(\sec \theta \cos \theta = \cos \theta + \cos^2 \theta + \cos^2 \theta\right)$

$$\frac{1}{\cos\theta} \times \cos\theta = 1$$

$$\Rightarrow$$
 $(1 + \tan^2 \theta) - 2 + (\cos^2 \theta + \sin^2 \theta) = \tan \theta$

$$\Rightarrow$$
 1 + tan² θ - 2 + 1 = tan θ

$$\Rightarrow \tan^2 \theta - \tan \theta = 0$$

$$\Rightarrow$$
 $\tan \theta (\tan \theta - 1) = 0$

$$\Rightarrow$$
 $\tan \theta = 0$ or $\tan \theta = 1$

$$\tan \theta = 0 \implies \theta = 0, \pi$$

$$\tan \theta = 1 \quad \Rightarrow \quad \theta = \frac{\pi}{4}$$

Set of solutions: 0, $\frac{\pi}{4}$, π

(g)
$$\tan^2 2\theta = \sec 2\theta - 1$$
 $0 \le \theta \le 180^\circ$

$$\Rightarrow$$
 $\sec^2 2\theta - 1 = \sec 2\theta - 1$

$$\Rightarrow \sec^2 2\theta - \sec 2\theta = 0$$

$$\Rightarrow \sec 2\theta (\sec 2\theta - 1) = 0$$

$$\Rightarrow$$
 $\sec 2\theta = 0$ (not possible) or $\sec 2\theta = 1$

$$\Rightarrow$$
 $\cos 2\theta = 1$ $0 \le 2\theta \le 360^{\circ}$

Refer to graph of $y = \cos \theta$

$$\Rightarrow$$
 $2\theta = 0^{\circ}, 360^{\circ}$

$$\Rightarrow \theta = 0^{\circ}, 180^{\circ}$$

(h)
$$\sec^2 \theta - (1 + \sqrt{3}) \tan \theta + \sqrt{3} = 1$$
 $0 \le \theta \le 2\pi$

$$\Rightarrow$$
 $(1 + \tan^2 \theta) - (1 + \sqrt{3}) \tan \theta + \sqrt{3} = 1$

$$\Rightarrow$$
 $\tan^2 \theta - (1 + \sqrt{3}) \tan \theta + \sqrt{3} = 0$

$$\Rightarrow$$
 $(\tan \theta - \sqrt{3}) (\tan \theta - 1) = 0$

$$\Rightarrow$$
 $\tan \theta = \sqrt{3} \text{ or } \tan \theta = 1$

First answer (α) for $\tan \theta = \sqrt{3}$ is $\frac{\pi}{3}$

Second solution is $\pi + \frac{\pi}{3} = \frac{4\pi}{3}$

First answer for $\tan \theta = 1$ is $\frac{\pi}{4}$

Second solution is $\pi + \frac{\pi}{4} = \frac{5\pi}{4}$

Set of solutions: $\frac{\pi}{4}$, $\frac{\pi}{3}$, $\frac{5\pi}{4}$, $\frac{4\pi}{3}$

Edexcel AS and A Level Modular Mathematics

Exercise D, Question 9

Question:

Given that $\tan^2 k = 2 \sec k$.

- (a) find the value of sec k.
- (b) deduce that $\cos k = \sqrt{2-1}$
- (c) hence solve, in the interval $0 \le k \le 360^\circ$, $\tan^2 k = 2 \sec k$, giving your answers to 1 decimal place.

Solution:

(a)
$$\tan^2 k = 2 \sec k$$

 $\Rightarrow (\sec^2 k - 1) = 2 \sec k$
 $\Rightarrow \sec^2 k - 2 \sec k - 1 = 0$
 $\Rightarrow \sec k = \frac{2 \pm \sqrt{8}}{2} = \frac{2 \pm 2\sqrt{2}}{2} = 1 \pm \sqrt{2}$

As sec k has no values between -1 and 1 sec $k = 1 + \sqrt{2}$

(b)
$$\cos k = \frac{1}{1+\sqrt{2}} = \frac{\sqrt{2}-1}{(1+\sqrt{2})(\sqrt{2}-1)} = \frac{\sqrt{2}-1}{2-1} = \sqrt{2}-1$$

(c) Solutions of $\tan^2 k = 2 \sec k$, $0 \le k \le 360^\circ$ are solutions of $\cos k = \sqrt{2-1}$ Calculator solution is 65.5°

$$\Rightarrow k = 65.5^{\circ}, 360^{\circ} - 65.5^{\circ} = 65.5^{\circ}, 294.5^{\circ} (1 \text{ d.p.})$$

Edexcel AS and A Level Modular Mathematics

Exercise D, Question 10

Question:

Given that $a = 4 \sec x$, $b = \cos x$ and $c = \cot x$,

- (a) express b in terms of a
- (b) show that $c^2 = \frac{16}{a^2 16}$

Solution:

(a) As
$$a = 4 \sec x$$

$$\Rightarrow$$
 $\sec x = \frac{a}{4}$

$$\Rightarrow \cos x = \frac{4}{a}$$

As
$$\cos x = b$$

$$\Rightarrow b = \frac{4}{a}$$

(b)
$$c = \cot x$$

$$\Rightarrow$$
 $c^2 = \cot^2 x$

$$\Rightarrow \frac{1}{c^2} = \tan^2 x$$

$$\Rightarrow \frac{1}{c^2} = \sec^2 x - 1 \quad (\text{use } 1 + \tan^2 x \equiv \sec^2 x)$$

$$\Rightarrow \frac{1}{c^2} = \frac{a^2}{16} - 1 \qquad \left(\sec x = \frac{a}{4} \right)$$

$$\Rightarrow$$
 16 = $a^2c^2 - 16c^2$ (multiply by 16 c^2)

$$\Rightarrow$$
 $c^2 (a^2 - 16) = 16$

$$\Rightarrow c^2 = \frac{16}{a^2 - 16}$$

Edexcel AS and A Level Modular Mathematics

Exercise D, Question 11

Question:

Given that $x = \sec \theta + \tan \theta$,

- (a) show that $\frac{1}{x} = \sec \theta \tan \theta$.
- (b) Hence express $x^2 + \frac{1}{r^2} + 2$ in terms of θ , in its simplest form.

Solution:

(a)
$$x = \sec \theta + \tan \theta$$

$$\frac{1}{x} = \frac{1}{\sec \theta + \tan \theta}$$

$$= \frac{\sec \theta - \tan \theta}{(\sec \theta + \tan \theta) (\sec \theta - \tan \theta)}$$

$$= \frac{\sec \theta - \tan \theta}{\sec^2 \theta - \tan^2 \theta}$$

$$= \sec \theta - \tan \theta \quad (as 1 + \tan^2 \theta = \sec^2 \theta \implies \sec^2 \theta - \tan^2 \theta = 1)$$

(b)
$$x + \frac{1}{x} = \sec \theta + \tan \theta + \sec \theta - \tan \theta = 2 \sec \theta$$

$$\Rightarrow \left(x + \frac{1}{x}\right)^2 = 4 \sec^2 \theta$$

$$\Rightarrow x^2 + 2x \times \frac{1}{x} + \frac{1}{x^2} = 4 \sec^2 \theta$$

$$\Rightarrow x^2 + \frac{1}{x^2} + 2 = 4 \sec^2 \theta$$

Edexcel AS and A Level Modular Mathematics

Exercise D, Question 12

Question:

Given that $2 \sec^2 \theta - \tan^2 \theta = p$ show that $\csc^2 \theta = \frac{p-1}{p-2}, p \neq 2$.

Solution:

$$2 \sec^{2} \theta - \tan^{2} \theta = p$$

$$\Rightarrow 2 (1 + \tan^{2} \theta) - \tan^{2} \theta = p$$

$$\Rightarrow 2 + 2 \tan^{2} \theta - \tan^{2} \theta = p$$

$$\Rightarrow \tan^{2} \theta = p - 2$$

$$\Rightarrow \cot^{2} \theta = \frac{1}{p - 2} \left(\cot \theta = \frac{1}{\tan \theta} \right)$$

$$\csc^{2} \theta = 1 + \cot^{2} \theta = 1 + \frac{1}{p - 2} = \frac{(p - 2) + 1}{p - 2} = \frac{p - 1}{p - 2}$$

Edexcel AS and A Level Modular Mathematics

Exercise E, Question 1

Question:

Without using a calculator, work out, giving your answer in terms of π , the value of:

- (a) arccos 0
- (b) arcsin(1)
- (c) arctan(-1)
- (d) $\arcsin \left(-\frac{1}{2}\right)$
- (e) $\arcsin \left(-\frac{1}{\sqrt{2}} \right)$
- (f) $\arctan \left(-\frac{1}{\sqrt{3}} \right)$
- (g) arcsin $\left(\sin\frac{\pi}{3}\right)$
- (h) arcsin $\left(\sin\frac{2\pi}{3}\right)$

Solution:

(a) $\arccos 0$ is the angle α in $0 \le \alpha \le \pi$ for which $\cos \alpha = 0$

Refer to graph of
$$y = \cos \theta \implies \alpha = \frac{\pi}{2}$$

So arccos
$$0 = \frac{\pi}{2}$$

(b) arcsin 1 is the angle α in $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$ for which $\sin \alpha = 1$

Refer to graph of
$$y = \sin \theta \implies \alpha = \frac{\pi}{2}$$

So arcsin $1 = \frac{\pi}{2}$

(c) arctan (-1) is the angle α in $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$ for which $\tan \alpha = -1$

So arctan $(-1) = -\frac{\pi}{4}$

(d) $\arcsin\left(-\frac{1}{2}\right)$ is the angle α in $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$ for which

$$\sin\alpha = -\frac{1}{2}$$

So arcsin $\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$

(e) $\arccos\left(-\frac{1}{\sqrt{2}}\right)$ is the angle α in $0 \le \alpha \le \pi$ for which $\cos \alpha = -$

$$\frac{1}{\sqrt{2}}$$

So arccos $\left(-\frac{1}{\sqrt{2}}\right) = \frac{3\pi}{4}$

(f) $\arctan\left(-\frac{1}{\sqrt{3}}\right)$ is the angle α in $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$ for which $\tan \alpha = -\frac{1}{\sqrt{3}}$ So $\arctan\left(-\frac{1}{\sqrt{3}}\right) = -\frac{\pi}{6}$

(g) $\arcsin\left(\sin\frac{\pi}{3}\right)$ is the angle α in $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$ for which $\sin\alpha = \sin\frac{\pi}{3}$

So arcsin $\left(\sin\frac{\pi}{3}\right) = \frac{\pi}{3}$

(h) $\arcsin\left(\sin\frac{2\pi}{3}\right)$ is the angle α in $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$ for which $\sin\alpha = \sin\frac{2\pi}{3}$

So arcsin $\left(\sin\frac{2\pi}{3}\right) = \frac{\pi}{3}$

© Pearson Education Ltd 2008

Edexcel AS and A Level Modular Mathematics

Exercise E, Question 2

Question:

Find the value of:

(a)
$$\arcsin \left(\frac{1}{2}\right) + \arcsin \left(-\frac{1}{2}\right)$$

(b)
$$\arccos\left(\frac{1}{2}\right) - \arccos\left(-\frac{1}{2}\right)$$

(c)
$$\arctan (1) - \arctan (-1)$$

Solution:

(a)
$$\arcsin\left(\frac{1}{2}\right) + \arcsin\left(-\frac{1}{2}\right) = \frac{\pi}{6} + \left(-\frac{\pi}{6}\right) = 0$$

(b)
$$\arccos\left(\frac{1}{2}\right) - \arccos\left(-\frac{1}{2}\right) = \frac{\pi}{3} - \frac{2\pi}{3} = -\frac{\pi}{3}$$

(c)
$$\arctan (1) - \arctan (-1) = \frac{\pi}{4} - \left(-\frac{\pi}{4}\right) = \frac{\pi}{2}$$

Edexcel AS and A Level Modular Mathematics

Exercise E, Question 3

Question:

Without using a calculator, work out the values of:

(a)
$$\sin \left(\arcsin \frac{1}{2} \right)$$

(b)
$$\sin \left[\arcsin \left(-\frac{1}{2} \right) \right]$$

(c)
$$tan [arctan (-1)]$$

Solution:

(a)
$$\sin \left(\arcsin \frac{1}{2} \right)$$

$$\arcsin \frac{1}{2} = \alpha \text{ where } \sin \alpha = \frac{1}{2}, -\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$$

So arcsin
$$\frac{1}{2} = \frac{\pi}{6}$$

$$\Rightarrow$$
 $\sin \left(\arcsin \frac{1}{2} \right) = \sin \frac{\pi}{6} = \frac{1}{2}$

(b)
$$\sin \left[\arcsin \left(-\frac{1}{2} \right) \right]$$

$$\arcsin\left(-\frac{1}{2}\right) = \alpha \text{ where } \sin\alpha = -\frac{1}{2}, -\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$$

So arcsin
$$\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$$

$$\Rightarrow$$
 $\sin \left[\arcsin \left(-\frac{1}{2} \right) \right] = \sin \left(-\frac{\pi}{6} \right) = -\frac{1}{2}$

(c)
$$tan [arctan (-1)]$$

$$\arctan(-1) = \alpha \text{ where } \tan \alpha = -1, -\frac{\pi}{2} < \alpha < \frac{\pi}{2}$$

So
$$\arctan(-1) = -\frac{\pi}{4}$$

$$\Rightarrow \tan[\arctan(-1)] = \tan\left(-\frac{\pi}{4}\right) = -1$$

(d)
$$\cos(\arccos 0)$$

 $\arccos 0 = \alpha \text{ where } \cos \alpha = 0, 0 \le \alpha \le \pi$
So $\arccos 0 = \frac{\pi}{2}$

$$\Rightarrow$$
 cos (arccos 0) = cos $\frac{\pi}{2}$ = 0

Edexcel AS and A Level Modular Mathematics

Exercise E, Question 4

Question:

Without using a calculator, work out the exact values of:

(a)
$$\sin \left[\arccos \left(\frac{1}{2} \right) \right]$$

(b)
$$\cos \left[\arcsin \left(-\frac{1}{2} \right) \right]$$

(c)
$$\tan \left[\arccos \left(-\frac{\sqrt{2}}{2} \right) \right]$$

(d) sec [arctan (
$$\sqrt{3}$$
)]

(e) cosec
$$[\arcsin(-1)]$$

(f)
$$\sin \left[2 \arcsin \left(\frac{\sqrt{2}}{2} \right) \right]$$

Solution:

(a)
$$\sin \left(\arccos \frac{1}{2} \right)$$

$$\arccos \frac{1}{2} = \frac{\pi}{3}$$

$$\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$$

(b)
$$\cos \left[\arcsin \left(-\frac{1}{2} \right) \right]$$

$$\arcsin\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$$

$$\cos\left(-\frac{\pi}{6}\right) = + \frac{\sqrt{3}}{2}$$

(c)
$$\tan \left[\arccos \left(-\frac{\sqrt{2}}{2} \right) \right]$$

 $\arccos \left(-\frac{\sqrt{2}}{2} \right) = \alpha \text{ where } \cos \alpha = -\frac{\sqrt{2}}{2}, 0 \le \alpha \le \pi$

So arccos
$$\left(-\frac{\sqrt{2}}{2}\right) = \frac{3\pi}{4}$$

 $\tan \frac{3\pi}{4} = -1$

(d) sec (arctan $\sqrt{3}$) arctan $\sqrt{3} = \frac{\pi}{3}$ (the angle whose tan is $\sqrt{3}$)

$$\sec \frac{\pi}{3} = \frac{1}{\cos \frac{\pi}{3}} = \frac{1}{\frac{1}{2}} = 2$$

(e) cosec [$\arcsin(-1)$] $\arcsin(-1) = \alpha \text{ where } \sin \alpha = -1, -\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$

So arcsin
$$(-1) = -\frac{\pi}{2}$$

$$\Rightarrow$$
 cosec [arcsin (-1)] = $\frac{1}{\sin(-\frac{\pi}{2})}$ = $\frac{1}{-1}$ = -1

(f)
$$\sin \left[2 \arcsin \left(\frac{\sqrt{2}}{2} \right) \right]$$

 $\arcsin \frac{\sqrt{2}}{2} = \frac{\pi}{4}$
 $\sin \left[2 \arcsin \left(\frac{\sqrt{2}}{2} \right) \right] = \sin \frac{\pi}{2} = 1$

[©] Pearson Education Ltd 2008

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise E, Question 5

Question:

Given that $\arcsin k = \alpha$, where 0 < k < 1 and α is in radians, write down, in terms of α , the first two positive values of x satisfying the equation $\sin x = k$.

Solution:

As k is positive, the first two positive solutions of $\sin x = k$ are $\arcsin k$ and $\pi - \arcsin k$ i.e. α and $\pi - \alpha$ (Try a few examples, taking specific values for k).

Edexcel AS and A Level Modular Mathematics

Exercise E, Question 6

Question:

Given that x satisfies arcsin x = k, where $0 < k < \frac{\pi}{2}$,

- (a) state the range of possible values of x
- (b) express, in terms of x,
- (i) $\cos k$ (ii) $\tan k$

Given, instead, that $-\frac{\pi}{2} < k < 0$,

(c) how, if at all, would it affect your answers to (b)?

Solution:

(a) $\arcsin x$ is the angle α in $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$ such that $\sin \alpha = x$

In this case $x = \sin k$ where $0 < k < \frac{\pi}{2}$

As sin is an increasing function

$$\sin 0 < x < \sin \frac{\pi}{2}$$

i.e.
$$0 < x < 1$$

(b) (i)
$$\cos k = \pm \sqrt{1 - \sin^2 k} = \pm \sqrt{1 - x^2}$$

k is in the 1st quadrant $\Rightarrow \cos k > 0$

So
$$\cos k = \sqrt{1 - x^2}$$

(ii)
$$\tan k = \frac{\sin k}{\cos k} = \frac{x}{\sqrt{1 - x^2}}$$

(c)k is now in the 4th quadrant, where cos k is positive. So the value of cos k remains the same and there is no change to tan k.

Edexcel AS and A Level Modular Mathematics

Exercise E, Question 7

Question:

The function f is defined as $f: x \to \arcsin x$, $-1 \le x \le 1$, and the function g is such that g(x) = f(2x).

- (a) Sketch the graph of y = f(x) and state the range of f.
- (b) Sketch the graph of y = g(x).
- (c) Define g in the form $g: x \to \dots$ and give the domain of g.
- (d) Define g^{-1} in the form $g^{-1}: x \to \dots$

Solution:

(a) $y = \arcsin x$

Range: $-\frac{\pi}{2} \le f(x) \le \frac{\pi}{2}$

(b) Using the transformation work, the graph of y = f(2x) is the graph of y = f(x) stretched in the x direction by scale factor $\frac{1}{2}$.

$$y = g(x)$$

(c)
$$g: x \to \arcsin 2x$$
, $-\frac{1}{2} \le x \le \frac{1}{2}$

(d) Let
$$y = \arcsin 2x$$

 $\Rightarrow 2x = \sin y$
 $\Rightarrow x = \frac{1}{2} \sin y$

So
$$g^{-1}: x \to \frac{1}{2} \sin x$$
, $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$

Edexcel AS and A Level Modular Mathematics

Exercise E, Question 8

Question:

(a) Sketch the graph of $y = \sec x$, with the restricted domain

$$0 \leq x \leq \pi, \ x \neq \frac{\pi}{2}.$$

(b) Given that arcsec x is the inverse function of $\sec x$, $0 \le x \le \pi$, $x \ne \frac{\pi}{2}$, sketch the graph of $y = \operatorname{arcsec} x$ and state the range of $\operatorname{arcsec} x$.

Solution:

(a)
$$y = \sec x$$

(b) Reflect the above graph in the line y = x

Range: $0 \le \operatorname{arcsec} x \le \pi$, $\operatorname{arcsec} x \ne \frac{\pi}{2}$

Edexcel AS and A Level Modular Mathematics

Exercise F, Question 1

Question:

Solve $\tan x = 2 \cot x$, in the interval $-180^{\circ} \le x \le 90^{\circ}$. Give any non-exact answers to 1 decimal place.

Solution:

$$\tan x = 2 \cot x, -180^{\circ} \le x \le 90^{\circ}$$

$$\Rightarrow \tan x = \frac{2}{\tan x}$$

$$\Rightarrow \tan^2 x = 2$$

$$\Rightarrow \tan x = \pm \sqrt{2}$$

Calculator value for $\tan x = + \sqrt{2}$ is 54.7°

Solutions are required in the 1st, 3rd and 4th quadrants. Solution set: -125.3° , -54.7° , $+54.7^{\circ}$

Edexcel AS and A Level Modular Mathematics

Exercise F, Question 2

Question:

Given that $p = 2 \sec \theta$ and $q = 4 \cos \theta$, express p in terms of q.

Solution:

$$p = 2 \sec \theta \implies \sec \theta = \frac{p}{2}$$

 $q = 4 \cos \theta \implies \cos \theta = \frac{q}{4}$

$$\sec \theta = \frac{1}{\cos \theta} \implies \frac{p}{2} = \frac{1}{\frac{q}{4}} = \frac{4}{q} \implies p = \frac{8}{q}$$

Edexcel AS and A Level Modular Mathematics

Exercise F, Question 3

Question:

Given that $p = \sin \theta$ and $q = 4 \cot \theta$, show that $p^2q^2 = 16 (1 - p^2)$.

Solution:

$$p = \sin \theta \implies \frac{1}{p} = \frac{1}{\sin \theta} = \csc \theta$$

$$q = 4 \cot \theta \implies \cot \theta = \frac{q}{4}$$
Using $1 + \cot^2 \theta \equiv \csc^2 \theta$

$$\Rightarrow 1 + \frac{q^2}{16} = \frac{1}{p^2} \quad \text{(multiply by } 16p^2\text{)}$$

$$\Rightarrow 16p^2 + p^2q^2 = 16$$

$$\Rightarrow p^2q^2 = 16 - 16p^2 = 16 \text{ (} 1 - p^2\text{)}$$

Edexcel AS and A Level Modular Mathematics

Exercise F, Question 4

Question:

Give any non-exact answers to 1 decimal place.

- (a) Solve, in the interval $0 < \theta < 180^{\circ}$,
- (i) $\csc \theta = 2 \cot \theta$
- (ii) $2 \cot^2 \theta = 7 \csc \theta 8$
- (b) Solve, in the interval $0 \le \theta \le$ (i) sec ($2\theta 15$ $^{\circ}$) = cosec 135 $^{\circ}$
- (ii) $\sec^2 \theta + \tan \theta = 3$
- (c) Solve, in the interval $0 \le x \le$ 2π
- (i) cosec $\left(x + \frac{\pi}{15}\right) = -\sqrt{2}$
- (ii) $\sec^2 x = \frac{4}{3}$

Solution:

(a) (i) $\csc \theta = 2 \cot \theta$, $0 < \theta < 180^{\circ}$

$$\Rightarrow \frac{1}{\sin \theta} = \frac{2 \cos \theta}{\sin \theta}$$

$$\Rightarrow$$
 2 cos $\theta = 1$

$$\Rightarrow \cos \theta = \frac{1}{2}$$

$$\Rightarrow$$
 $\theta = 60^{\circ}$

(ii) $2 \cot^2 \theta = 7 \csc \theta - 8, 0 < \theta < 180^\circ$

$$\Rightarrow$$
 2 (cosec² $\theta - 1$) = 7 cosec $\theta - 8$

$$\Rightarrow$$
 2 $\csc^2 \theta - 7 \csc \theta + 6 = 0$

$$\Rightarrow$$
 $(2 \csc \theta - 3) (\csc \theta - 2) = 0$

$$\Rightarrow$$
 $\csc \theta = \frac{3}{2} \text{ or } \csc \theta = 2$

So
$$\sin \theta = \frac{2}{3}$$
 or $\sin \theta = \frac{1}{2}$

Solutions are α° and $(180 - \alpha)^{\circ}$ where α is the calculator value. Solutions set: 41.8° , 138.2° , 30° , 150° i.e. 30° , 41.8° , 138.2° , 150°

(b) (i)
$$\sec (2\theta - 15^{\circ}) = \csc 135^{\circ}, 0 \le \theta \le 360^{\circ}$$

 $\Rightarrow \cos (2\theta - 15^{\circ}) = \frac{1}{\csc 135^{\circ}} = \sin 135^{\circ} = \frac{\sqrt{2}}{2}$

Solve cos (
$$2\theta - 15^{\circ}$$
) = $\frac{\sqrt{2}}{2}$, -15° $\leq 2\theta - 15^{\circ}$ $\leq 705^{\circ}$

The calculator value is $\cos^{-1} \left(\frac{\sqrt{2}}{2} \right) = 45^{\circ}$

cos is positive, so (2θ – 15 $^{\circ}$) is in the 1st and 4th quadrants.

So
$$(2\theta - 15^{\circ}) = 45^{\circ}, 315^{\circ}, 405^{\circ}, 675^{\circ}$$

 $\Rightarrow 2\theta = 60^{\circ}, 330^{\circ}, 420^{\circ}, 690^{\circ}$
 $\Rightarrow \theta = 30^{\circ}, 165^{\circ}, 210^{\circ}, 345^{\circ}$

(ii)
$$\sec^2 \theta + \tan \theta = 3, 0 \le \theta \le 360^\circ$$

 $\Rightarrow 1 + \tan^2 \theta + \tan \theta = 3$
 $\Rightarrow \tan^2 \theta + \tan \theta - 2 = 0$

$$\Rightarrow (\tan \theta - 1) (\tan \theta + 2) = 0$$

$$\Rightarrow$$
 $\tan \theta = 1 \text{ or } \tan \theta = -2$

$$\tan \theta = 1 \quad \Rightarrow \quad \theta = 45 \, ^{\circ} \, , \, 180 \, ^{\circ} \, + 45 \, ^{\circ} \, , \, i.e. \, 45^{\circ}, \, 225^{\circ}$$

$$\tan \theta = -2 \implies \theta = 180^{\circ} + (-63.4)^{\circ}, 360^{\circ} + (-63.4^{\circ}), i.e.$$
 $116.6^{\circ}, 296.6^{\circ}$

(c) (i) cosec
$$\left(x + \frac{\pi}{15}\right) = -\sqrt{2}, 0 \le x \le 2\pi$$

 $\Rightarrow \sin\left(x + \frac{\pi}{15}\right) = -\frac{1}{\sqrt{2}}$

Calculator value is $\sin^{-1}\left(-\frac{1}{\sqrt{2}}\right) = -\frac{\pi}{4}$

 $\sin\left(x + \frac{\pi}{15}\right)$ is negative, so $x + \frac{\pi}{15}$ is in 3rd and 4th quadrants.

So
$$x + \frac{\pi}{15} = \frac{5\pi}{4}, \frac{7\pi}{4}$$

$$\Rightarrow x = \frac{5\pi}{4} - \frac{\pi}{15}, \frac{7\pi}{4} - \frac{\pi}{15} = \frac{75\pi - 4\pi}{60}, \frac{105\pi - 4\pi}{60} = \frac{71\pi}{60}, \frac{101\pi}{60}$$

(ii)
$$\sec^2 x = \frac{4}{3}, 0 \le x \le 2\pi$$

$$\Rightarrow \cos^2 x = \frac{3}{4}$$

$$\Rightarrow \cos x = \pm \frac{\sqrt{3}}{2}$$

Calculator value for $\cos x = + \frac{\sqrt{3}}{2}$ is $\frac{\pi}{6}$

As $\cos x$ is \pm , x is in all four quadrants.

Solutions set:
$$x = \frac{\pi}{6}, \pi - \frac{\pi}{6}, \pi + \frac{\pi}{6}, 2\pi - \frac{\pi}{6} = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$$

Edexcel AS and A Level Modular Mathematics

Exercise F, Question 5

Question:

Given that $5 \sin x \cos y + 4 \cos x \sin y = 0$, and that $\cot x = 2$, find the value of $\cot y$.

Solution:

$$5 \sin x \cos y + 4 \cos x \sin y = 0$$

$$\Rightarrow \frac{5 \sin x \cos y}{\sin x \sin y} + \frac{4 \cos x \sin y}{\sin x \sin y} = 0 \quad \text{(divide by } \sin x \sin y\text{)}$$

$$\Rightarrow \frac{5 \cos y}{\sin y} + \frac{4 \cos x}{\sin x} = 0$$
So
$$5 \cot y + 4 \cot x = 0$$
As
$$\cot x = 2$$

$$5 \cot y + 8 = 0$$

$$5 \cot y = -8$$

$$\cot y = -\frac{8}{5}$$

Edexcel AS and A Level Modular Mathematics

Exercise F, Question 6

Question:

Show that:

(a)
$$(\tan \theta + \cot \theta) (\sin \theta + \cos \theta) \equiv \sec \theta + \csc \theta$$

(b)
$$\frac{\csc x}{\csc x - \sin x} \equiv \sec^2 x$$

(c)
$$(1 - \sin x)$$
 $(1 + \csc x) \equiv \cos x \cot x$

(d)
$$\frac{\cot x}{\csc x - 1} - \frac{\cos x}{1 + \sin x} \equiv 2 \tan x$$

(e)
$$\frac{1}{\csc \theta - 1} + \frac{1}{\csc \theta + 1} \equiv 2 \sec \theta \tan \theta$$

(f)
$$\frac{(\sec\theta - \tan\theta) (\sec\theta + \tan\theta)}{1 + \tan^2\theta} \equiv \cos^2\theta$$

Solution:

(a) L.H.S.
$$\equiv (\tan \theta + \cot \theta) (\sin \theta + \cos \theta)$$

 $\equiv \left(\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}\right) (\sin \theta + \cos \theta)$
 $\equiv \left(\frac{\sin^2 \theta + \cos^2 \theta}{\cos \theta \sin \theta}\right) (\sin \theta + \cos \theta)$
 $\equiv \left(\frac{1}{\cos \theta \sin \theta}\right) (\sin \theta + \cos \theta)$
 $\equiv \frac{\sin \theta}{\cos \theta \sin \theta} + \frac{\cos \theta}{\cos \theta \sin \theta}$
 $\equiv \frac{1}{\cos \theta} + \frac{1}{\sin \theta}$
 $\equiv \sec \theta + \csc \theta \equiv \text{R.H.S.}$

(b)

L.H.S.
$$\equiv \frac{\cos cx}{\cos cx - \sin x}$$

$$\equiv \frac{\frac{1}{\sin x}}{\frac{1}{\sin x} - \sin x}$$

$$\equiv \frac{\frac{1}{\sin x}}{\frac{1 - \sin^2 x}{\sin x}}$$

$$\equiv \frac{1}{\sin x} \times \frac{\sin x}{1 - \sin^2 x}$$

$$\equiv \frac{1}{1 - \sin^2 x}$$

$$\equiv \frac{1}{\cos^2 x} \quad (\text{using } \sin^2 x + \cos^2 x \equiv 1)$$

$$\equiv \sec^2 x \equiv \text{R.H.S.}$$

(c) L.H.S.
$$\equiv (1 - \sin x) (1 + \csc x)$$

 $\equiv 1 - \sin x + \csc x - \sin x \csc x$
 $\equiv 1 - \sin x + \csc x - 1$ $\left(\operatorname{as } \operatorname{cosec} x = \frac{1}{\sin x} \right)$
 $\equiv \operatorname{cosec} x - \sin x$
 $\equiv \frac{1}{\sin x} - \sin x$
 $\equiv \frac{1 - \sin^2 x}{\sin x}$
 $\equiv \frac{\cos^2 x}{\sin x}$
 $\equiv \frac{\cos x}{\sin x} \times \cos x$
 $\equiv \cos x \cot x \equiv \text{R.H.S.}$

(d)

L.H.S.
$$\equiv \frac{\cot x}{\csc x - 1} - \frac{\cos x}{1 + \sin x}$$

$$\equiv \frac{\frac{\cos x}{\sin x}}{\frac{1}{\sin x} - 1} - \frac{\cos x}{1 + \sin x}$$

$$\equiv \frac{\frac{\cos x}{\sin x}}{\frac{1 - \sin x}{\sin x}} - \frac{\cos x}{1 + \sin x}$$

$$\equiv \frac{\cos x}{1 - \sin x} - \frac{\cos x}{1 + \sin x}$$

$$\equiv \frac{\cos x(1 + \sin x) - \cos x(1 - \sin x)}{(1 - \sin x)(1 + \sin x)}$$

$$\equiv \frac{2\cos x \sin x}{1 - \sin^2 x}$$

$$\equiv \frac{2\cos x \sin x}{\cos^2 x}$$

$$\equiv 2\frac{\sin x}{\cos x}$$

$$\equiv 2\tan x \equiv \text{R.H.S.}$$

(f) L.H.S.
$$\equiv \frac{(\sec \theta - \tan \theta) (\sec \theta + \tan \theta)}{1 + \tan^2 \theta}$$

$$\equiv \frac{\sec^2 \theta - \tan^2 \theta}{\sec^2 \theta}$$

$$\equiv \frac{(1 + \tan^2 \theta) - \tan^2 \theta}{\sec^2 \theta}$$

$$\equiv \frac{1}{\sec^2 \theta}$$

$$\equiv \cos^2 \theta \equiv \text{R.H.S.}$$

Edexcel AS and A Level Modular Mathematics

Exercise F, Question 7

Question:

(a) Show that
$$\frac{\sin x}{1 + \cos x} + \frac{1 + \cos x}{\sin x} \equiv 2 \csc x$$
.

(b) Hence solve, in the interval
$$-2\pi \le x \le 2\pi$$
, $\frac{\sin x}{1 + \cos x} + \frac{1 + \cos x}{\sin x} = -\frac{4}{\sqrt{3}}$.

Solution:

(b) Solve
$$2 \operatorname{cosec} x = -\frac{4}{\sqrt{3}}, -2\pi \le x \le 2\pi$$

$$\Rightarrow \operatorname{cosec} x = -\frac{2}{\sqrt{3}}$$

$$\Rightarrow \sin x = -\frac{\sqrt{3}}{2}$$

Calculator value is $-\frac{\pi}{3}$

Solutions in
$$-2\pi \le x \le 2\pi$$
 are $-\frac{\pi}{3}$, $-\pi + \frac{\pi}{3}$, $\pi + \frac{\pi}{3}$, $2\pi - \frac{\pi}{3}$, i.e. $-\frac{\pi}{3}$, $-\frac{2\pi}{3}$, $\frac{4\pi}{3}$, $\frac{5\pi}{3}$

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise F, Question 8

Question:

Prove that
$$\frac{1+\cos\theta}{1-\cos\theta} \equiv (\csc\theta + \cot\theta)^2$$
.

Solution:

R.H.S.
$$\equiv (\csc\theta + \cot\theta)^2$$

 $\equiv \left(\frac{1}{\sin\theta} + \frac{\cos\theta}{\sin\theta}\right)^2$
 $\equiv \frac{(1+\cos\theta)^2}{\sin^2\theta}$
 $\equiv \frac{(1+\cos\theta)^2}{1-\cos^2\theta}$
 $\equiv \frac{(1+\cos\theta)(1+\cos\theta)}{(1+\cos\theta)(1-\cos\theta)}$
 $\equiv \frac{1+\cos\theta}{1-\cos\theta} \equiv \text{L.H.S.}$

Edexcel AS and A Level Modular Mathematics

Exercise F, Question 9

Question:

Given that $\sec A = -3$, where $\frac{\pi}{2} < A < \pi$,

- (a) calculate the exact value of $\tan A$.
- (b) Show that $\csc A = \frac{3\sqrt{2}}{4}$.

Solution:

(a)
$$\sec A = -3$$
, $\frac{\pi}{2} < A < \pi$, i.e. A is in 2nd quadrant.

As
$$1 + \tan^2 A = \sec^2 A$$

 $1 + \tan^2 A = 9$
 $\tan^2 A = 8$
 $\tan A = \pm \sqrt{8} = \pm 2\sqrt{2}$
As A is in 2nd quadrant, $\tan A$ is $-$ ve.

So
$$\tan A = -2\sqrt{2}$$

(b)
$$\sec A = -3$$
, so $\cos A = -\frac{1}{3}$

As
$$\tan A = \frac{\sin A}{\cos A}$$

$$\sin A = \cos A \times \tan A = -\frac{1}{3} \times -2 \sqrt{2} = \frac{2\sqrt{2}}{3}$$

So
$$\csc A = \frac{3}{2\sqrt{2}} = \frac{3\sqrt{2}}{2\times 2} = \frac{3\sqrt{2}}{4}$$

Edexcel AS and A Level Modular Mathematics

Exercise F, Question 10

Question:

Given that $\sec \theta = k$, $|k| \ge 1$, and that θ is obtuse, express in terms of k:

- (a) $\cos \theta$
- (b) $\tan^2 \theta$
- (c) $\cot \theta$
- (d) cosec θ

Solution:

$$\sec \theta = k, |k| \ge |$$

 θ is in the 2nd quadrant \Rightarrow k is negative

(a)
$$\cos \theta = \frac{1}{\sec \theta} = \frac{1}{k}$$

(b) Using
$$1 + \tan^2 \theta = \sec^2 \theta$$

 $\tan^2 \theta = k^2 - 1$

(c)
$$\tan \theta = \pm \sqrt{k^2 - 1}$$

In the 2nd quadrant, $\tan \theta$ is – ve.

So
$$\tan \theta = -\sqrt{k^2 - 1}$$

$$\cot \theta = \frac{1}{\tan \theta} = \frac{1}{-\sqrt{k^2 - 1}} = -\frac{1}{\sqrt{k^2 - 1}}$$

(d) Using
$$1 + \cot^2 \theta = \csc^2 \theta$$

$$\csc^2 \theta = 1 + \frac{1}{k^2 - 1} = \frac{k^2 - 1 + 1}{k^2 - 1} = \frac{k^2}{k^2 - 1}$$

So
$$\csc \theta = \pm \frac{k}{\sqrt{k^2 - 1}}$$

In the 2nd quadrant, cosec θ is +ve.

As k is – ve,
$$\csc \theta = \frac{-k}{\sqrt{k^2 - 1}}$$

Edexcel AS and A Level Modular Mathematics

Exercise F, Question 11

Question:

Solve, in the interval $0 \le x \le 2\pi$, the equation sec $\left(x + \frac{\pi}{4}\right) = 2$, giving your answers in terms of π .

Solution:

$$\sec\left(x + \frac{\pi}{4}\right) = 2, 0 \le x \le 2\pi$$

$$\Rightarrow \cos\left(x + \frac{\pi}{4}\right) = \frac{1}{2}, 0 \le x \le 2\pi$$

$$\Rightarrow x + \frac{\pi}{4} = \cos^{-1} \frac{1}{2}, 2\pi - \cos^{-1} \frac{1}{2} = \frac{\pi}{3}, 2\pi - \frac{\pi}{3}$$

$$\operatorname{So} x = \frac{\pi}{3} - \frac{\pi}{4}, \frac{5\pi}{3} - \frac{\pi}{4} = \frac{4\pi - 3\pi}{12}, \frac{20\pi - 3\pi}{12} = \frac{\pi}{12}, \frac{17\pi}{12}$$

Edexcel AS and A Level Modular Mathematics

Exercise F, Question 12

Question:

Find, in terms of π , the value of arcsin $\left(\begin{array}{c} \frac{1}{2} \end{array}\right)$ – arcsin $\left(\begin{array}{c} -\frac{1}{2} \end{array}\right)$.

Solution:

 $\arcsin\left(\frac{1}{2}\right)$ is the angle in the interval $-\frac{\pi}{2} \le \text{angle} \le \frac{\pi}{2}$ whose sine is $\frac{1}{2}$.

So
$$\left(\frac{1}{2}\right) = \frac{\pi}{6}$$

Similarly, arcsin
$$\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$$

So arcsin
$$\left(\begin{array}{c} \frac{1}{2} \end{array}\right)$$
 - arcsin $\left(\begin{array}{c} -\frac{1}{2} \end{array}\right)$ = $\frac{\pi}{6}$ - $\left(\begin{array}{c} -\frac{\pi}{6} \end{array}\right)$ = $\frac{\pi}{3}$

Edexcel AS and A Level Modular Mathematics

Exercise F, Question 13

Question:

Solve, in the interval $0 \le x \le 2\pi$, the equation $\sec^2 x - \frac{2\sqrt{3}}{3}\tan x - 2 = 0$, giving your answers in terms of π .

Solution:

$$\sec^{2} x - \frac{2\sqrt{3}}{3} \tan x - 2 = 0, 0 \le x \le 2\pi$$

$$\Rightarrow (1 + \tan^{2} x) - \frac{2\sqrt{3}}{3} \tan x - 2 = 0$$

$$\tan^{2} x - \frac{2\sqrt{3}}{3} \tan x - 1 = 0$$

(This does factorise but you may not have noticed!)

$$\left(\tan x + \frac{\sqrt{3}}{3}\right) \left(\tan x - \sqrt{3}\right) = 0$$

$$\Rightarrow \tan x = -\frac{\sqrt{3}}{3} \text{ or } \tan x = \sqrt{3}$$

Calculator values are $-\frac{\pi}{6}$ and $\frac{\pi}{3}$.

Solution set: $\frac{\pi}{3}$, $\frac{5\pi}{6}$, $\frac{4\pi}{3}$, $\frac{11\pi}{6}$

Edexcel AS and A Level Modular Mathematics

Exercise F, Question 14

Question:

- (a) Factorise $\sec x \csc x 2 \sec x \csc x + 2$.
- (b) Hence solve $\sec x \csc x 2 \sec x \csc x + 2 = 0$, in the interval $0 \le x \le 360^{\circ}$.

Solution:

(a)
$$\sec x \csc x - 2 \sec x - \csc x + 2$$

= $\sec x (\csc x - 2) - (\csc x - 2)$
= $(\csc x - 2) (\sec x - 1)$

(b) So
$$\sec x \csc x - 2 \sec x - \csc x + 2 = 0$$

 $\Rightarrow (\csc x - 2) (\sec x - 1) = 0$
 $\Rightarrow \csc x = 2 \text{ or } \sec x = 1$
 $\Rightarrow \sin x = \frac{1}{2} \text{ or } \cos x = 1$

$$\sin x = \frac{1}{2}$$
, $0 \le x \le 360^{\circ}$
 $\Rightarrow x = 30^{\circ}$, $(180 - 30)^{\circ}$
 $\cos x = 1$, $0 \le x \le 360^{\circ}$,
 $\Rightarrow x = 0^{\circ}$, 360° (from the graph)

Full set of solutions: 0°, 30°, 150°, 360°

[©] Pearson Education Ltd 2008

Edexcel AS and A Level Modular Mathematics

Exercise F, Question 15

Question:

Given that arctan $(x-2) = -\frac{\pi}{3}$, find the value of x.

Solution:

$$\arctan\left(x-2\right) = -\frac{\pi}{3}$$

$$\Rightarrow x - 2 = \tan \left(-\frac{\pi}{3} \right)$$

$$\Rightarrow x - 2 = \sqrt{3}$$

$$\Rightarrow x - 2 = -\sqrt{3}$$

$$\Rightarrow$$
 $x = 2 - \sqrt{3}$

Edexcel AS and A Level Modular Mathematics

Exercise F, Question 16

Question:

On the same set of axes sketch the graphs of $y = \cos x$, $0 \le x \le \pi$, and $y = \arccos x$, $-1 \le x \le 1$, showing the coordinates of points in which the curves meet the axes.

Solution:

•••

Edexcel AS and A Level Modular Mathematics

Exercise F, Question 17

Question:

- (a) Given that $\sec x + \tan x = -3$, use the identity $1 + \tan^2 x = \sec^2 x$ to find the value of $\sec x \tan x$.
- (b) Deduce the value of
- (i) $\sec x$
- (ii) $\tan x$
- (c) Hence solve, in the interval $-180^{\circ} \le x \le 180^{\circ}$, $\sec x + \tan x = -3$. (Give answer to 1 decimal place).

Solution:

(a) As
$$1 + \tan^2 x \equiv \sec^2 x$$

 $\sec^2 x - \tan^2 x \equiv 1$
 $\Rightarrow (\sec x - \tan x) (\sec x + \tan x) \equiv 1$ (difference of two squares)
As $\tan x + \sec x = -3$ is given,
so $-3 (\sec x - \tan x) = 1$
 $\Rightarrow \sec x - \tan x = -\frac{1}{3}$

(b)
$$\sec x + \tan x = -3$$

and $\sec x - \tan x = -\frac{1}{3}$

(i) Add the equations
$$\Rightarrow$$
 2 $\sec x = -\frac{10}{3}$ \Rightarrow $\sec x = -\frac{5}{3}$

(ii) Subtract the equation
$$\Rightarrow$$
 $2 \tan x = -3 + \frac{1}{3} = -\frac{8}{3} \Rightarrow \tan x = -\frac{4}{3}$

(c) As $\sec x$ and $\tan x$ are both -ve, $\cos x$ and $\tan x$ are both -ve. So x must be in the 2nd quadrant.

Solving $\tan x = -\frac{4}{3}$, where x is in the 2nd quadrant, gives 180 ° + $\left(-53.1 \, \circ \right) = 126.9 \, \circ$

Edexcel AS and A Level Modular Mathematics

Exercise F, Question 18

Question:

Given that $p = \sec \theta - \tan \theta$ and $q = \sec \theta + \tan \theta$, show that $p = \frac{1}{q}$.

Solution:

$$p = \sec \theta - \tan \theta, q = \sec \theta + \tan \theta$$
Multiply together:
$$pq = (\sec \theta - \tan \theta) (\sec \theta + \tan \theta) = \sec^2 \theta - \tan^2 \theta = 1 \text{ (since } 1 + \tan^2 \theta = \sec^2 \theta)$$

$$\Rightarrow p = \frac{1}{q}$$

(There are several ways of solving this problem).

Edexcel AS and A Level Modular Mathematics

Exercise F, Question 19

Question:

- (a) Prove that $\sec^4 \theta \tan^4 \theta = \sec^2 \theta + \tan^2 \theta$.
- (b) Hence solve, in the interval

$$-180^{\circ} \le \theta \le 180^{\circ}$$
, $\sec^4 \theta = \tan^4 \theta + 3 \tan \theta$. (Give answers to 1 decimal place).

Solution:

(a) L.H.S.
$$\equiv \sec^4 \theta - \tan^4 \theta$$

 $\equiv (\sec^2 \theta + \tan^2 \theta) (\sec^2 \theta - \tan^2 \theta)$
 $\equiv (\sec^2 \theta + \tan^2 \theta) (1)$
 $\equiv \sec^2 \theta + \tan^2 \theta \equiv \text{R.H.S.}$

(b)
$$\sec^4 \theta = \tan^4 \theta + 3 \tan \theta$$

 $\Rightarrow \sec^4 \theta - \tan^4 \theta = 3 \tan \theta$
 $\Rightarrow \sec^2 \theta + \tan^2 \theta = 3 \tan \theta$ [using part (a)]
 $\Rightarrow (1 + \tan^2 \theta) + \tan^2 \theta = 3 \tan \theta$
 $\Rightarrow 2 \tan^2 \theta - 3 \tan \theta + 1 = 0$
 $\Rightarrow (2 \tan \theta - 1) (\tan \theta - 1) = 0$
 $\Rightarrow \tan \theta = \frac{1}{2} \operatorname{or} \tan \theta = 1$

In the interval
$$-180^{\circ} \le \theta \le 180^{\circ}$$

 $\tan \theta = \frac{1}{2} \implies \theta = \tan^{-1} \frac{1}{2}, -180^{\circ} + \tan^{-1}$

$$\frac{1}{2} = 26.6^{\circ}, -153.4^{\circ}$$

$$\tan \theta = 1 \Rightarrow \theta = \tan^{-1} 1, -180^{\circ} + \tan^{-1} 1 = 45^{\circ}, -135^{\circ}$$
Set of solutions: $-153.4^{\circ}, -135^{\circ}, 26.6^{\circ}, 45^{\circ} (3 \text{ s.f.})$

Edexcel AS and A Level Modular Mathematics

Exercise F, Question 20

Question:

(Although integration is not in the specification for C3, this question only requires you to know that the area under a curve can be represented by an integral.)

- (a) Sketch the graph of $y = \sin x$ and shade in the area representing $\int_{0}^{\frac{\pi}{2}} \sin x \, dx$.
- (b) Sketch the graph of $y = \arcsin x$ and shade in the area representing $\int_0^1 \arcsin x \, dx$.
- (c) By considering the shaded areas explain why \int_{0}^{∞}

$$\frac{\pi}{2} \sin x \, dx + \int_0^1 \arcsin x \, dx = \frac{\pi}{2}.$$

Solution:

(a)
$$y = \sin x$$

- $\int_{0}^{\frac{\pi}{2}} \sin x \, dx \text{ represents the area between } y = \sin x, x \text{-axis and } x = \frac{\pi}{2}.$
- (b) $y = \arcsin x$, $-1 \le x \le 1$

 $\int_{0}^{1} \arcsin x \, dx$ represents the area between the curve, x-axis and x = 1.

(c) The curves are the same with the axes interchanged. The shaded area in (b) could be added to the graph in (a) to form a rectangle with sides 1 and $\frac{\pi}{2}$, as in the diagram.

Area of rectangle = $\frac{\pi}{2}$

So
$$\int_0^{\frac{\pi}{2}} \sin x \, dx + \int_0^1 \arcsin x \, dx = \frac{\pi}{2}$$