Edexcel AS and A Level Modular Mathematics

Exercise A, Question 1

Question:

Show that each of these equations f(x) = 0 has a root in the given interval(s):

(a)
$$x^3 - x + 5 = 0$$
 $-2 < x < -1$.

(b)
$$3 + x^2 - x^3 = 0$$
 $1 < x < 2$.

(c)
$$x^2 - \sqrt{x - 10} = 0$$
 $3 < x < 4$.

(d)
$$x^3 - \frac{1}{x} - 2 = 0$$
 $-0.5 < x < -0.2$ and $1 < x < 2$.

(e)
$$x^5 - 5x^3 - 10 = 0$$
 $-2 < x < -1.8$, $-1.8 < x < -1$ and $2 < x < 3$.

(f)
$$\sin x - \ln x = 0$$
 2.2 < x < 2.3

(g)
$$e^x - \ln x - 5 = 0$$
 1.65 < $x < 1.75$.

(h)
$$\sqrt[3]{x} - \cos x = 0$$
 0.5 < $x < 0.6$.

Solution:

(a) Let f (x) =
$$x^3 - x + 5$$

$$f(-2) = (-2)^3 - (-2) + 5 = -8 + 2 + 5 = -1$$

$$f(-1) = (-1)^3 - (-1) + 5 = -1 + 1 + 5 = 5$$

f(-2) < 0 and f(-1) > 0 so there is a change of sign.

 \Rightarrow There is a root between x = -2 and x = -1.

(b) Let f (x) =
$$3 + x^2 - x^3$$

$$f(1) = 3 + (1)^2 - (1)^3 = 3 + 1 - 1 = 3$$

$$f(2) = 3 + (2)^{2} - (2)^{3} = 3 + 4 - 8 = -1$$

f(1) > 0 and f(2) < 0 so there is a change of sign.

 \Rightarrow There is a root between x = 1 and x = 2.

(c) Let f (x) =
$$x^2 - \sqrt{x - 10}$$

$$f(3) = 3^2 - \sqrt{3} - 10 = -2.73$$

$$f(4) = 4^2 - \sqrt{4 - 10} = 4$$

- f(3) < 0 and f(4) > 0 so there is a change of sign.
 - \Rightarrow There is a root between x = 3 and x = 4.

(d) Let f (x) =
$$x^3 - \frac{1}{x} - 2$$

[1]
$$f(-0.5) = (-0.5)^3 - \frac{1}{-0.5} - 2 = -0.125$$

$$f(-0.2) = (-0.2)^3 - \frac{1}{-0.2} - 2 = 2.992$$

- f(-0.5) < 0 and f(-0.2) > 0 so there is a change of sign.
 - \Rightarrow There is a root between x = -0.5 and x = -0.2.

[2]
$$f(1) = (1)^3 - \frac{1}{1} - 2 = -2$$

$$f(2) = (2)^3 - \frac{1}{2} - 2 = 5\frac{1}{2}$$

- f(1) < 0 and f(2) > 0 so there is a change of sign.
 - \Rightarrow There is a root between x = 1 and x = 2.

(e) Let f (x) =
$$x^5 - 5x^3 - 10$$

[1]
$$f(-2) = (-2)^5 - 5(-2)^3 - 10 = -2$$

$$f(-1.8) = (-1.8)^5 - 5(-1.8)^3 - 10 = 0.26432$$

- f(-2) < 0 and f(-1.8) > 0 so there is a change of sign.
 - \Rightarrow There is a root between x = -2 and x = -1.8.

[2]
$$f(-1.8) = 0.26432$$

$$f(-1) = (-1)^5 - 5(-1)^3 - 10 = -6$$

- f(-1.8) > 0 and f(-1) < 0 so there is a change of sign.
 - \Rightarrow There is a root between x = -1.8 and x = -1.

[3]
$$f(2) = (2)^5 - 5(2)^3 - 10 = -18$$

$$f(3) = (3)^5 - 5(3)^3 - 10 = 98$$

- f(2) < 0 and f(3) > 0 so there is a change of sign.
 - \Rightarrow There is a root between x = 2 and x = 3.

(f) Let f (x) =
$$\sin x - \ln x$$

$$f(2.2) = \sin 2.2 - \ln 2.2 = 0.0200$$

$$f(2.3) = -0.0872$$

$$f(2.2) > 0$$
 and $f(2.3) < 0$ so there is a change of sign.

 \Rightarrow There is a root between x = 2.2 and x = 2.3.

(g) Let f (x) =
$$e^x - \ln x - 5$$

$$f(1.65) = e^{1.65} - \ln 1.65 - 5 = -0.294$$

$$f(1.75) = e^{1.75} - \ln 1.75 - 5 = 0.195$$

$$f(1.65) < 0$$
 and $f(1.75) > 0$ so there is a change of sign.

 \Rightarrow There is a root between x = 1.65 and x = 1.75.

(h) Let f (x) =
$$\sqrt[3]{x} - \cos x$$

$$f(0.5) = \sqrt[3]{0.5} - \cos 0.5 = -0.0839$$

$$f(0.6) = \sqrt[3]{0.6} - \cos 0.6 = 0.0181$$

f(0.5) < 0 and f(0.6) > 0 so there is a change of sign.

 \Rightarrow There is a root between x = 0.5 and x = 0.6.

[©] Pearson Education Ltd 2008

Edexcel AS and A Level Modular Mathematics

Exercise A, Question 2

Question:

Given that f (x) = $x^3 - 5x^2 + 2$, show that the equation f (x) = 0 has a root near to x = 5.

Solution:

Let
$$f(x) = x^3 - 5x^2 + 2$$

 $f(4.9) = (4.9)^3 - 5(4.9)^2 + 2 = -0.401$
 $f(5.0) = 2$
 $f(4.9) < 0$ and $f(5) > 0$ so there is a change of sign.
 \Rightarrow There is a root between $x = 4.9$ and $x = 5$.

Edexcel AS and A Level Modular Mathematics

Exercise A, Question 3

Question:

Given that $f(x) \equiv 3 - 5x + x^3$, show that the equation f(x) = 0 has a root x = a, where a lies in the interval 1 < a < 2.

Solution:

Let
$$f(x) = 3 - 5x + x^3$$

 $f(1) = 3 - 5(1) + (1)^3 = -1$
 $f(2) = 3 - 5(2) + (2)^3 = 1$
 $f(1) < 0$ and $f(2) > 0$ so there is a change of sign.
 \Rightarrow There is a root between $x = 1$ and $x = 2$.

So if the root is x = a, then 1 < a < 2.

Edexcel AS and A Level Modular Mathematics

Exercise A, Question 4

Question:

Given that $f(x) \equiv e^x \sin x - 1$, show that the equation f(x) = 0 has a root x = r, where r lies in the interval 0.5 < r < 0.6.

Solution:

f (x) =
$$e^x \sin x - 1$$

f (0.5) = $e^{0.5} \sin 0.5 - 1 = -0.210$
f (0.6) = $e^{0.6} \sin 0.6 - 1 = 0.0288$
f (0.5) < 0 and f (0.6) > 0 so there is a change of sign.
 \Rightarrow There is a root between $x = 0.5$ and $x = 0.6$.

So if the root is x = r, then 0.5 < r < 0.6.

Edexcel AS and A Level Modular Mathematics

Exercise A, Question 5

Question:

It is given that f (x) $\equiv x^3 - 7x + 5$.

(a) Copy and complete the table below.

x	-3	-2	-1	0	1	2	3
f(x)		1					

(b) Given that the negative root of the equation $x^3 - 7x + 5 = 0$ lies between α and $\alpha + 1$, where α is an integer, write down the value of α .

Solution:

(a)

x	-3	-2	-1	0	1	2	3
f(x)	-1	11	11	5	-1	-1	11

(b) f (-3) < 0 and f (-2) > 0 so there is a change of sign.

 \Rightarrow There is a root between x = -3 and x = -2.

So $\alpha = -3$. (**Note.** $\alpha + 1 = -2$).

Edexcel AS and A Level Modular Mathematics

Exercise A, Question 6

Question:

Given that $f(x) \equiv x - (\sin x + \cos x)^{\frac{1}{2}}$, $0 \le x \le \frac{3}{4}\pi$, show that the equation f(x) = 0 has a root lying between $\frac{\pi}{3}$ and $\frac{\pi}{2}$.

Solution:

$$f(x) = x - (\sin x + \cos x)^{\frac{1}{2}}$$

$$f\left(\frac{\pi}{3}\right) = \frac{\pi}{3} - \left(\sin \frac{\pi}{3} + \cos \frac{\pi}{3}\right)^{\frac{1}{2}} = -0.122$$

$$f\left(\frac{\pi}{2}\right) = \frac{\pi}{2} - \left(\sin \frac{\pi}{2} + \cos \frac{\pi}{2}\right)^{\frac{1}{2}} = 0.571$$

$$f\left(\frac{\pi}{3}\right) < 0 \text{ and } f\left(\frac{\pi}{2}\right) > 0 \text{ so there is a change of sign.}$$

$$\Rightarrow \text{ There is a root between } x = \frac{\pi}{3} \text{ and } x = \frac{\pi}{2}.$$

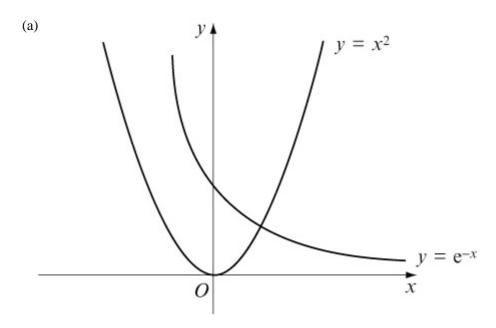
Edexcel AS and A Level Modular Mathematics

Exercise A, Question 7

Question:

- (a) Using the same axes, sketch the graphs of $y = e^{-x}$ and $y = x^2$.
- (b) Explain why the equation $e^{-x} = x^2$ has only one root.
- (c) Show that the equation $e^{-x} = x^2$ has a root between x = 0.70 and x = 0.71.

Solution:



(b) The curves meet where $e^{-x} = x^2$

The curves meet at one point, so there is one value of x that satisfies the equation $e^{-x} = x^2$.

So $e^{-x} = x^2$ has one root.

(c) Let f (x) =
$$e^{-x} - x^2$$

$$f(0.70) = e^{-0.70} - 0.70^2 = 0.00659$$

$$f(0.71) = e^{-0.71} - 0.71^2 = -0.0125$$

f(0.70) > 0 and f(0.71) < 0 so there is a change of sign.

 \Rightarrow There is a root between x = 0.70 and x = 0.71.

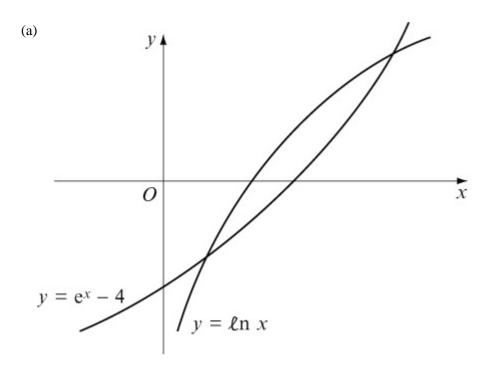
Edexcel AS and A Level Modular Mathematics

Exercise A, Question 8

Question:

- (a) On the same axes, sketch the graphs of $y = \ln x$ and $y = e^x 4$.
- (b) Write down the number of roots of the equation $\ln x = e^x 4$.
- (c) Show that the equation $\ln x = e^x 4$ has a root in the interval (1.4, 1.5).

Solution:



(b) The curves meet at two points, so there are two values of x that satisfy the equation $\ln x = e^x - 4$.

So $\ln x = e^x - 4$ has two roots.

(c) Let f (x) =
$$\ln x - e^x + 4$$

$$f(1.4) = \ln 1.4 - e^{1.4} + 4 = 0.281$$

$$f(1.5) = \ln 1.5 - e^{1.5} + 4 = -0.0762$$

f(1.4) > 0 and f(1.5) < 0 so there is a change of sign.

 \Rightarrow There is a root between x = 1.4 and x = 1.5.

Edexcel AS and A Level Modular Mathematics

Exercise A, Question 9

Question:

(a) On the same axes, sketch the graphs of $y = \sqrt{x}$ and $y = \frac{2}{x}$.

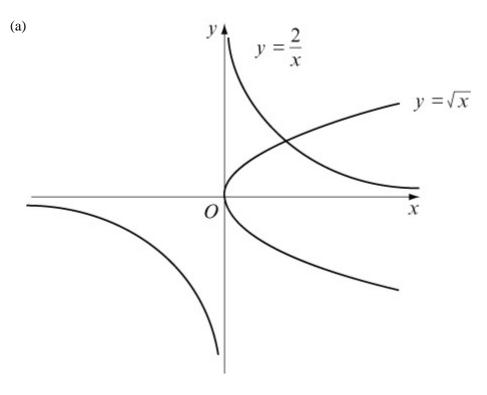
(b) Using your sketch, write down the number of roots of the equation $\sqrt{x} = \frac{2}{x}$.

(c) Given that $f(x) \equiv \sqrt{x - \frac{2}{x}}$, show that f(x) = 0 has a root r, where r lies between x = 1 and x = 2.

(d) Show that the equation $\sqrt{x} = \frac{2}{x}$ may be written in the form $x^p = q$, where p and q are integers to be found.

(e) Hence write down the exact value of the root of the equation $\sqrt{x-\frac{2}{x}}=0$.

Solution:



(b) The curves meet at one point, so there is one value of x that satisfies the

equation $\sqrt{x} = \frac{2}{x}$.

So $\sqrt{x} = \frac{2}{x}$ has **one** root.

(c) f (x) =
$$\sqrt{x} - \frac{2}{x}$$

$$f(1) = \sqrt{1 - \frac{2}{1}} = -1$$

$$f(2) = \sqrt{2 - \frac{2}{2}} = 0.414$$

f(1) < 0 and f(2) > 0 so there is a change of sign.

 \Rightarrow There is a root between x = 1 and x = 2.

(d)
$$\sqrt{x} = \frac{2}{x}$$

$$x^{\frac{1}{2}} = \frac{2}{x}$$

$$x^{\frac{1}{2}} \times x = 2$$

$$x^{\frac{1}{2}+1}=2$$

$$x^{\frac{3}{2}} = 2$$

$$(x^{\frac{3}{2}})^2 = 2^2$$

$$x^3 = 4$$

So
$$p = 3$$
 and $q = 4$

(e)
$$x^{\frac{3}{2}} = 2$$

 $\Rightarrow x = 2^{\frac{2}{3}} \qquad [=(2^2)^{\frac{1}{3}} = 4^{\frac{1}{3}}]$

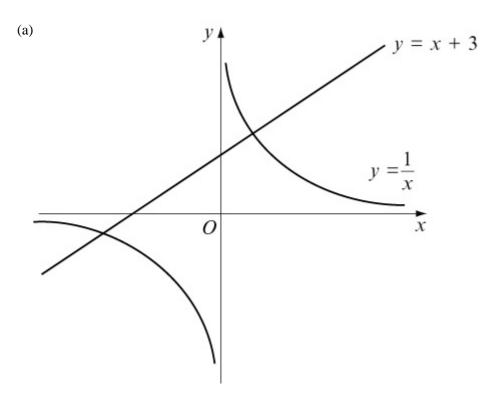
Edexcel AS and A Level Modular Mathematics

Exercise A, Question 10

Question:

- (a) On the same axes, sketch the graphs of $y = \frac{1}{x}$ and y = x + 3.
- (b) Write down the number of roots of the equation $\frac{1}{x} = x + 3$.
- (c) Show that the positive root of the equation $\frac{1}{x} = x + 3$ lies in the interval (0.30, 0.31).
- (d) Show that the equation $\frac{1}{x} = x + 3$ may be written in the form $x^2 + 3x 1 = 0$.
- (e) Use the quadratic formula to find the positive root of the equation $x^2 + 3x 1 = 0$ to 3 decimal places.

Solution:



(b) The line meets the curve at two points, so there are two values of x that satisfy the equation $\frac{1}{x} = x + 3$.

So $\frac{1}{x} = x + 3$ has **two** roots.

(c) Let f (x) =
$$\frac{1}{x} - x - 3$$

$$f(0.30) = \frac{1}{0.30} - (0.30) - 3 = 0.0333$$

$$f(0.31) = \frac{1}{0.31} - (0.31) - 3 = -0.0842$$

f(0.30) > 0 and f(0.31) < 0 so there is a change of sign.

 \Rightarrow There is a root between x = 0.30 and x = 0.31.

(e) Using
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 with $a = 1, b = 3, c = -1$

$$x = \frac{-(3) \pm \sqrt{(3)^2 - 4(1)(-1)}}{2(1)} = \frac{-3 \pm \sqrt{9 + 4}}{2} = \frac{-3 \pm \sqrt{13}}{2}$$
So $x = \frac{-3 + \sqrt{13}}{2} = 0.303$
and $x = \frac{-3 - \sqrt{13}}{2} = -3.303$

The positive root is 0.303 to 3 decimal places.

Edexcel AS and A Level Modular Mathematics

Exercise B, Question 1

Question:

Show that $x^2 - 6x + 2 = 0$ can be written in the form:

(a)
$$x = \frac{x^2 + 2}{6}$$

(b)
$$x = \sqrt{6x - 2}$$

(c)
$$x = 6 - \frac{2}{x}$$

Solution:

(a)
$$x^2 - 6x + 2 = 0$$

 $6x = x^2 + 2$ Add $6x$ to each side

$$x = \frac{x^2 + 2}{6}$$
 Divide each side by 6

(b)
$$x^2 - 6x + 2 = 0$$

 $x^2 + 2 = 6x$ Add $6x$ to each side
 $x^2 = 6x - 2$ Subtract 2 from each side
 $x = \sqrt{6x - 2}$ Take the square root of each side

(c)
$$x^2 - 6x + 2 = 0$$

 $x^2 + 2 = 6x$ Add $6x$ to each side
 $x^2 = 6x - 2$ Subtract 2 from each side
 $\frac{x^2}{x} = \frac{6x}{x} - \frac{2}{x}$ Divide each term by x

$$x = 6 - \frac{2}{x}$$
 Simplify

Edexcel AS and A Level Modular Mathematics

Exercise B, Question 2

Question:

Show that $x^3 + 5x^2 - 2 = 0$ can be written in the form:

(a)
$$x = \sqrt[3]{2 - 5x^2}$$

(b)
$$x = \frac{2}{x^2} - 5$$

(c)
$$x = \sqrt{\frac{2 - x^3}{5}}$$

Solution:

(a)
$$x^3 + 5x^2 - 2 = 0$$

$$x^3 + 5x^2 = 2$$
 Add 2 to each side

$$x^3 + 5x^2 = 2$$
 Add 2 to each side
 $x^3 = 2 - 5x^2$ Subtract $5x^2$ from each side
 $x = \sqrt[3]{2 - 5x^2}$ Take the cube root of each side

$$x = \sqrt[3]{2 - 5x^2}$$
 Take the cube root of each side

(b)
$$x^3 + 5x^2 - 2 = 0$$

$$x^3 + 5x^2 = 2$$
 Add 2 to each side

$$x^3 = 2 - 5x^2$$
 Subtract $5x^2$ from each side

$$\frac{x^3}{x^2} = \frac{2}{x^2} - \frac{5x^2}{x^2}$$
 Divide each term by x^2

$$x = \frac{2}{x^2} - 5$$
 Simplify

(c)
$$x^3 + 5x^2 - 2 = 0$$

$$x^3 + 5x^2 = 2$$
 Add 2 to each side

$$5x^2 = 2 - x^3$$
 Subtract x^3 from each side

$$x^2 = \frac{2 - x^3}{5}$$
 Divide each side by 5

$$x = \sqrt{\frac{2 - x^3}{5}}$$
 Take the square root of each side

Edexcel AS and A Level Modular Mathematics

Exercise B, Question 3

Question:

Rearrange $x^3 - 3x + 4 = 0$ into the form $x = \frac{x^3}{3} + a$, where the value of a is to be found.

Solution:

$$x^{3} - 3x + 4 = 0$$

$$3x = x^{3} + 4$$
 Add $3x$ to each side
$$\frac{3x}{3} = \frac{x^{3}}{3} + \frac{4}{3}$$
 Divide each term by 3

$$x = \frac{x^{3}}{3} + \frac{4}{3}$$
 Simplify
$$So \ a = \frac{4}{3}$$

Edexcel AS and A Level Modular Mathematics

Exercise B, Question 4

Question:

Rearrange $x^4 - 3x^3 - 6 = 0$ into the form $x = \sqrt[3]{px^4 - 2}$, where the value of p is to be found.

Solution:

$$x^{4} - 3x^{3} - 6 = 0$$

$$3x^{3} = x^{4} - 6 \qquad \text{Add } 3x^{3} \text{ to each side}$$

$$\frac{3x^{3}}{3} = \frac{x^{4}}{3} - \frac{6}{3} \qquad \text{Divide each term by 3}$$

$$x^{3} = \frac{x^{4}}{3} - 2 \qquad \text{Simplify}$$

$$x = \sqrt[3]{\frac{x^{4}}{3} - 2} \qquad \text{Take the cube root of each side}$$

$$\text{So } p = \frac{1}{3}$$

Edexcel AS and A Level Modular Mathematics

Exercise B, Question 5

Question:

- (a) Show that the equation $x^3 x^2 + 7 = 0$ can be written in the form $x = \sqrt[3]{x^2 7}$.
- (b) Use the iteration formula $x_{n+1} = x_n^2 7$, starting with $x_0 = 1$, to find x_2 to 1 decimal place.

Solution:

(a)
$$x^3 - x^2 + 7 = 0$$

 $x^3 + 7 = x^2$ Add x^2 to each side
 $x^3 = x^2 - 7$ Subtract 7 from each side
 $x = \sqrt[3]{x^2 - 7}$ Take the cube root of each side

(b)
$$x_0 = 1$$

 $x_1 = \sqrt[3]{(1)^2 - 7} = -1.817...$
 $x_2 = \sqrt[3]{(-1.817...)^2 - 7} = -1.546...$
So $x_2 = -1.5$ (1 d.p.)

Edexcel AS and A Level Modular Mathematics

Exercise B, Question 6

Question:

(a) Show that the equation $x^3 + 3x^2 - 5 = 0$ can be written in the form $x = \sqrt{\frac{5}{x+3}}$.

(b) Use the iteration formula $x_{n+1} = \sqrt{\frac{5}{x_n + 3}}$, starting with $x_0 = 1$, to find x_4 to 3 decimal places.

Solution:

(a)
$$x^3 + 3x^2 - 5 = 0$$

 $x^2 (x + 3) - 5 = 0$ Factorise x^2
 $x^2 (x + 3) = 5$ Add 5 to each side
 $x^2 = \frac{5}{x+3}$ Divide each side by $(x + 3)$
 $x = \sqrt{\frac{5}{x+3}}$ Take the square root of each side

(b)
$$x_0 = 1$$

$$x_1 = \sqrt{\frac{5}{(1) + 3}} = 1.118...$$

$$x_2 = \sqrt{\frac{5}{(1.118...) + 3}} = 1.101...$$

$$x_3 = \sqrt{\frac{5}{(1.101...) + 3}} = 1.104...$$

$$x_4 = \sqrt{\frac{5}{(1.104...) + 3}} = 1.103768...$$
So $x_4 = 1.104$ (3 d.p.)

Edexcel AS and A Level Modular Mathematics

Exercise B, Question 7

Question:

- (a) Show that the equation $x^6 5x + 3 = 0$ has a root between x = 1 and x = 1.5.
- (b) Use the iteration formula $x_{n+1} = 5\sqrt{5 \frac{3}{x_n}}$ to find an approximation for the root of the equation $x^6 - 5x + 3 = 0$, giving your answer to 2 decimal places.

Solution:

(a) Let
$$f(x) = x^6 - 5x + 3$$

 $f(1) = (1)^6 - 5(1) + 3 = -1$
 $f(1.5) = (1.5)^6 - 5(1.5) + 3 = 6.89$
 $f(1) < 0$ and $f(1.5) > 0$ so there is a change of sign.

There is a root between x = 1 and x = 1.5. \Rightarrow

(b)
$$x_0 = 1$$

 $x_1 = \sqrt[5]{5 - \frac{3}{1}} = 1.148...$
Similarly,
 $x_2 = 1.190...$
 $x_3 = 1.199...$
 $x_4 = 1.200...$
 $x_5 = 1.201...$

So the root is 1.20 (2 d.p.)

Edexcel AS and A Level Modular Mathematics

Exercise B, Question 8

Question:

- (a) Rearrange the equation $x^2 6x + 1 = 0$ into the form $x = p \frac{1}{x}$, where p is a constant to be found.
- (b) Starting with $x_0 = 3$, use the iteration formula $x_{n+1} = p \frac{1}{x_n}$ with your value of p, to find x_3 to 2 decimal places.

Solution:

(a)
$$x^2 - 6x + 1 = 0$$

 $x^2 + 1 = 6x$ Add $6x$ to each side
 $x^2 = 6x - 1$ Subtract 1 from each side
 $\frac{x^2}{x} = \frac{6x}{x} - \frac{1}{x}$ Divide each term by x
 $x = 6 - \frac{1}{x}$ Simplify
So $p = 6$
(b) $x_0 = 3$
 $x_1 = 6 - \frac{1}{3} = 5.666...$
 $x_2 = 6 - \frac{1}{5.666...} = 5.823...$
 $x_3 = 6 - \frac{1}{5.823} = 5.828...$

© Pearson Education Ltd 2008

So $x_3 = 5.83$ (2 d.p.)

Edexcel AS and A Level Modular Mathematics

Exercise B, Question 9

Question:

- (a) Show that the equation $x^3 x^2 + 8 = 0$ has a root in the interval (-2, -1).
- (b) Use a suitable iteration formula to find an approximation to 2 decimal places for the negative root of the equation $x^3 x^2 + 8 = 0$.

Solution:

(a) Let
$$f(x) = x^3 - x^2 + 8$$

 $f(-2) = (-2)^3 - (-2)^2 + 8 = -8 - 4 + 8 = -4$
 $f(-1) = (-1)^3 - (-1)^2 + 8 = -1 - 1 + 8 = 6$
 $f(-2) < 0$ and $f(-1) > 0$ so there is a change of sign.
 \Rightarrow There is a root between $x = -2$ and $x = -1$.

(b)
$$x^3 - x^2 + 8 = 0$$

 $x^3 + 8 = x^2$ Add x^2 to each side
 $x^3 = x^2 - 8$ Subtract 8 from each side
 $x = \sqrt[3]{x^2 - 8}$ Take the cube root of each side
Using $x_{n+1} = \sqrt[3]{x_{\text{kthinsp;n}}^2 - 8}$ and any value for x_0 , the root is -1.72 (2 d.p.).

Edexcel AS and A Level Modular Mathematics

Exercise B, Question 10

Question:

- (a) Show that $x^7 5x^2 20 = 0$ has a root in the interval (1.6, 1.7).
- (b) Use a suitable iteration formula to find an approximation to 3 decimal places for the root of $x^7 - 5x^2 - 20 = 0$ in the interval (1.6, 1.7).

Solution:

(a) Let f (x) =
$$x^7 - 5x^2 - 20$$

f (1.6) = (1.6) $^7 - 5$ (1.6) $^2 - 20 = -5.96$
f (1.7) = (1.7) $^7 - 5$ (1.7) $^2 - 20 = 6.58$
f (1.6) < 0 and f (1.7) > 0 so there is a change of sign.
 \Rightarrow There is a root between $x = 1.6$ and $x = 1.7$.

(b)
$$x^7 - 5x^2 - 20 = 0$$

 $x^7 - 20 = 5x^2$ Add $5x^2$ to each side
 $x^7 = 5x^2 + 20$ Add 20 to each side
 $x = \sqrt[7]{5x^2 + 20}$ Take the seventh root of each side
So let $x_{n+1} = \sqrt[7]{5x_{\text{\ n}}^2 + 20}$ and $x_0 = 1.6$, then
 $x_1 = \sqrt[7]{5(1.6)}^2 + 20 = 1.6464...$
Similarly.

Similarly,

$$x_2 = 1.6518...$$

$$x_3 = 1.6524...$$

$$x_4 = 1.6525...$$

$$x_5 = 1.6525...$$

So the root is 1.653 (3 d.p.)

Edexcel AS and A Level Modular Mathematics

Exercise C, Question 1

Question:

(a) Rearrange the cubic equation $x^3 - 6x - 2 = 0$ into the form $x = \pm \sqrt{a + \frac{b}{x}}$. State the values of the constants a and b.

(b) Use the iterative formula $x_{n+1} = \sqrt{a + \frac{b}{x_n}}$ with $x_0 = 2$ and your values of a and b to find the approximate positive solution x_4 of the equation, to an appropriate degree of accuracy. Show all your intermediate answers.

[E]

Solution:

(a)
$$x^3 - 6x - 2 = 0$$

 $x^3 - 2 = 6x$ Add $6x$ to each side
 $x^3 = 6x + 2$ Add 2 to each side
 $\frac{x^3}{x} = \frac{6x}{x} + \frac{2}{x}$ Divide each term by x
 $x^2 = 6 + \frac{2}{x}$ Simplify
 $x = \sqrt{6 + \frac{2}{x}}$ Take the square root of each side
So $a = 6$ and $b = 2$

(b)
$$x_0 = 2$$

 $x_1 = \sqrt{6 + \frac{2}{2}} = \sqrt{7} = 2.64575...$
 $x_2 = \sqrt{6 + \frac{2}{2.64575...}} = 2.59921...$
 $x_3 = \sqrt{6 + \frac{2}{2.59921...}} = 2.60181...$
 $x_4 = \sqrt{6 + \frac{2}{2.60181...}} = 2.60167...$
So $x_4 = 2.602$ (3 d.p.)

Edexcel AS and A Level Modular Mathematics

Exercise C, Question 2

Question:

(a) By sketching the curves with equations $y = 4 - x^2$ and $y = e^x$, show that the equation $x^2 + e^x - 4 = 0$ has one negative root and one positive root.

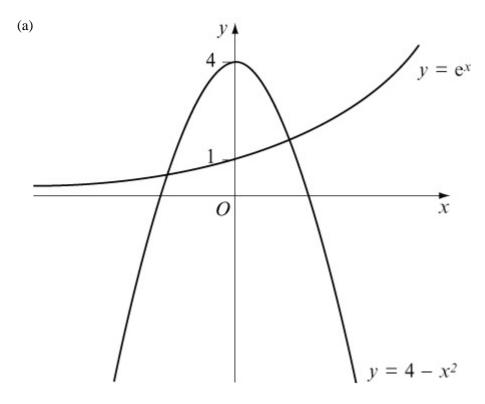
(b) Use the iteration formula $x_{n+1} = -(4 - e^{x_n})^{\frac{1}{2}}$ with $x_0 = -2$ to find in turn x_1, x_2, x_3 and x_4 and hence write down an approximation to the negative root of the equation, giving your answer to 4 decimal places. An attempt to evaluate the positive root of the equation is made using the iteration formula

$$x_{n+1} = (4 - e^x n)^{\frac{1}{2}}$$
 with $x_0 = 1.3$.

(c) Describe the result of such an attempt.

[E]

Solution:



The curves meet when x < 0 and x > 0, so the equation $e^x = 4 - x^2$ has one negative and one positive root.

(Note that $e^x = 4 - x^2$ is the same as $x^2 + e^x - 4 = 0$).

(b)
$$x_0 = -2$$

$$x_1 = -(4 - e^{-2})^{\frac{1}{2}} = -1.965875051$$

$$x_2 = -(4 - e^{-1.965875051})^{\frac{1}{2}} = -1.964679797$$

$$x_3 = -(4 - e^{-1.964679797})^{\frac{1}{2}} = -1.964637175$$

$$x_4 = -(4 - e^{-1.964637175})^{\frac{1}{2}} = -1.964635654$$

So
$$x_4 = -1.9646$$
 (4 d.p.)

(c)
$$x_0 = 1.3$$

$$x_1 = (4 - e^{1.3})^{\frac{1}{2}} = 0.575...$$

$$x_2 = (4 - e^{0.575...})^{\frac{1}{2}} = 1.490...$$

$$x_3 = (4 - e^{1.490...})^{\frac{1}{2}}$$
 No solution

The value of $4 - e^{1.490...}$ is **negative**.

You can not take the square root of a negative number.

[©] Pearson Education Ltd 2008

Edexcel AS and A Level Modular Mathematics

Exercise C, Question 3

Question:

- (a) Show that the equation $x^5 5x 6 = 0$ has a root in the interval (1, 2).
- (b) Stating the values of the constants p, q and r, use an iteration of the form $x_{n+1} = (px_n + q)^{-\frac{1}{r}}$ an appropriate number of times to calculate this root of the equation $x^5 5x 6 = 0$ correct to 3 decimal places. Show sufficient working to justify your final answer.

[E]

Solution:

(a) Let
$$f(x) = x^5 - 5x - 6$$

 $f(1) = (1)^5 - 5(1) - 6 = 1 - 5 - 6 = -10$
 $f(2) = (2)^5 - 5(2) - 6 = 32 - 10 - 6 = 16$
 $f(1) < 0$ and $f(2) > 0$ so there is a change of sign.
 \Rightarrow There is a root between $x = 1$ and $x = 2$.

$$x^5 - 6 = 5x$$
 Add $5x$ to each side
 $x^5 = 5x + 6$ Add 6 to each side
 $x = (5x + 6)^{\frac{1}{5}}$ Take the fifth root of each side
So $p = 5$, $q = 6$ and $r = 5$
Let $x_0 = 1$ then

$$x_1 = [5(1) + 6]^{\frac{1}{5}} = 1.6153...$$

 $x_2 = [5(1.6153...) + 6]^{\frac{1}{5}} = 1.6970...$
 $x_3 = 1.7068...$
 $x_4 = 1.7079...$
 $x_5 = 1.7080...$
 $x_6 = 1.7081...$
So the root is 1.708 (3 d.p.)

Edexcel AS and A Level Modular Mathematics

Exercise C, Question 4

Question:

f (x) $\equiv 5x - 4\sin x - 2$, where x is in radians.

- (a) Evaluate, to 2 significant figures, f(1.1) and f(1.15).
- (b) State why the equation f(x) = 0 has a root in the interval (1.1, 1.15). An iteration formula of the form $x_{n+1} = p \sin x_n + q$ is applied to find an approximation to the root of the equation f(x) = 0 in the interval (1.1, 1.15).
- (c) Stating the values of p and q, use this iteration formula with $x_0 = 1.1$ to find x_4 to 3 decimal places. Show the intermediate results in your working.

[E]

Solution:

(a)
$$f(1.1) = 5(1.1) - 4\sin(1.1) - 2 = -0.0648...$$

 $f(1.15) = 5(1.15) - 4\sin(1.15) - 2 = 0.0989...$

- (b) f(1.1) < 0 and f(1.15) > 0 so there is a change of sign.
 - \Rightarrow There is a root between x = 1.1 and x = 1.15.

(c)
$$5x - 4 \sin x - 2 = 0$$

 $5x - 2 = 4 \sin x$ Add $4 \sin x$ to each side
 $5x = 4 \sin x + 2$ Add 2 to each side
 $\frac{5x}{5} = \frac{4 \sin x}{5} + \frac{2}{5}$ Divide each term by 5
 $x = 0.8 \sin x + 0.4$ Simplify
So $p = 0.8$ and $q = 0.4$
 $x_0 = 1.1$
 $x_1 = 0.8 \sin (1.1) + 0.4 = 1.112965888$
 $x_2 = 0.8 \sin (1.112965888) + 0.4 = 1.117610848$
 $x_3 = 0.8 \sin (1.117610848) + 0.4 = 1.11924557$
 $x_4 = 0.8 \sin (1.11924557) + 0.4 = 1.119817195$
So $x_4 = 1.120$ (3 d.p.)

Edexcel AS and A Level Modular Mathematics

Exercise C, Question 5

Question:

 $f(x) \equiv 2 \sec x + 2x - 3$, where x is in radians.

- (a) Evaluate f(0.4) and f(0.5) and deduce the equation f(x) = 0 has a solution in the interval 0.4 < x < 0.5.
- (b) Show that the equation f(x) = 0 can be arranged in the form $x = p + \frac{q}{\cos x}$, where p and q are constants, and state the value of p and the value of q.
- (c) Using the iteration formula $x_{n+1} = p + \frac{q}{\cos x_n}$, $x_0 = 0.4$, with the values of p and q found in part (b), calculate x_1, x_2, x_3 and x_4 , giving your final answer to 4 decimal places.

[E]

Solution:

(a) f (0.4) =
$$2 \sec (0.4) + 2 (0.4) - 3 = -0.0286$$

f (0.5) = $2 \sec (0.5) + 2 (0.5) - 3 = 0.279$
f (0.4) < 0 and f (0.5) > 0 so there is a change of sign.
 \Rightarrow There is a root between $x = 0.4$ and $x = 0.5$.

(b)
$$2 \sec x + 2x - 3 = 0$$

 $2 \sec x + 2x = 3$ Add 3 to each side
 $2x = 3 - 2 \sec x$ Subtract 2 sec x from each side
 $\frac{2x}{2} = \frac{3}{2} - \frac{2 \sec x}{2}$ Divide each term by 2

$$x = 1.5 - \sec x$$
 Simplify
 $x = 1.5 - \frac{1}{\cos x}$ Use $\sec x = \frac{1}{\cos x}$

So
$$p = 1.5$$
 and $q = -1$

(c)
$$x_0 = 0.4$$

 $x_1 = 1.5 - \frac{1}{\cos(0.4)} = 0.4142955716$

$$x_2 = 1.5 - \frac{1}{\cos(0.4142955716)} = 0.4075815187$$

 $x_3 = 1.5 - \frac{1}{\cos(0.4075815187)} = 0.4107728765$
 $x_4 = 1.5 - \frac{1}{\cos(0.4107728765)} = 0.4092644032$
So $x_4 = 0.4093$ (4 d.p.)

[©] Pearson Education Ltd 2008

Edexcel AS and A Level Modular Mathematics

Exercise C, Question 6

Question:

$$f(x) \equiv e^{0.8x} - \frac{1}{3-2x}, x \neq \frac{3}{2}$$

- (a) Show that the equation f (x) = 0 can be written as $x = 1.5 0.5e^{-0.8x}$.
- (b) Use the iteration formula $x_{n+1} = 1.5 0.5e^{-0.8x}n$ with $x_0 = 1.3$ to obtain x_1, x_2 and x_3 . Give the value of x_3 , an approximation to a root of f (x) = 0, to 3 decimal places.
- (c) Show that the equation f(x) = 0 can be written in the form $x = p \ln (3 2x)$, stating the value of p.
- (d) Use the iteration formula $x_{n+1} = p \ln (3 2x_n)$ with $x_0 = -2.6$ and the value of p found in part (c) to obtain x_1, x_2 and x_3 . Give the value of x_3 , an approximation to the second root of f(x) = 0, to 3 decimal places.

[E]

Solution:

(a)
$$e^{0.8x} - \frac{1}{3-2x} = 0$$

 $e^{0.8x} = \frac{1}{3-2x}$ Add $\frac{1}{3-2x}$ to each side
 $\left(3-2x\right) e^{0.8x} = \frac{1}{3-2x} \times \left(3-2x\right)$ Multiply each side by
 $(3-2x)$
 $(3-2x) e^{0.8x} = 1$ Simplify
 $\frac{(3-2x) e^{0.8x}}{e^{0.8x}} = \frac{1}{e^{0.8x}}$ Divide each side by $e^{0.8x}$
 $3-2x = e^{-0.8x}$ Simplify (remember $\frac{1}{e^a} = e^{-a}$)
 $3 = e^{-0.8x} + 2x$ Add $2x$ to each side
 $2x = 3 - e^{-0.8x}$ Subtract $e^{-0.8x}$ from each side

$$\frac{2x}{2} = \frac{3}{2} - \frac{e^{-0.8x}}{2} \quad \text{Divide each term by 2}$$

$$x = 1.5 - 0.5e^{-0.8x} \quad \text{Simplify}$$

$$(b) x_0 = 1.3$$

$$x_1 = 1.5 - 0.5e^{-0.8(1.3)} = 1.323272659$$

$$x_2 = 1.5 - 0.5e^{-0.8(1.323272659)} = 1.32653255$$

$$x_3 = 1.5 - 0.5e^{-0.8(1.32653255)} = 1.326984349$$

$$\text{So } x_3 = 1.327 \text{ (3 d.p.)}$$

$$(c) e^{0.8x} = \frac{1}{3 - 2x} \quad \text{Add } \frac{1}{3 - 2x} \text{ to each side}$$

$$0.8x = \ln \left(\frac{1}{3 - 2x}\right) \quad \text{Taking logs}$$

$$0.8x = -\ln (3 - 2x) \quad \text{Simplify using ln } \left(\frac{1}{c}\right) = -\ln c$$

$$\frac{0.8x}{0.8} = -\frac{\ln (3 - 2x)}{0.8} \quad \text{Divide each side by 0.8}$$

$$x = -1.25\ln (3 - 2x) \quad \text{Simplify } \left(\frac{1}{0.8} = 1.25\right)$$

$$\text{So } p = -1.25$$

$$(d) x_0 = -2.6$$

$$x_1 = -1.25 \ln [3 - 2(-2.630167693)] = -2.639331488$$

$$x_3 = -1.25 \ln [3 - 2(-2.639331488)] = -2.642101849$$

© Pearson Education Ltd 2008

So $x_3 = -2.642$ (3 d.p.)

Edexcel AS and A Level Modular Mathematics

Exercise C, Question 7

Question:

(a) Use the iteration $x_{n+1} = (3x_n + 3)^{\frac{1}{3}}$ with $x_0 = 2$ to find, to 3 significant figures, x_4 .

The only real root of the equation $x^3 - 3x - 3 = 0$ is α . It is given that, to 3 significant figures, $\alpha = x_4$.

- (b) Use the substitution $y = 3^x$ to express $27^x 3^{x+1} 3 = 0$ as a cubic equation.
- (c) Hence, or otherwise, find an approximate solution to the equation $27^x 3^{x+1} 3 = 0$, giving your answer to 2 significant figures.

[E]

Solution:

(a)
$$x_0 = 2$$

 $x_1 = \begin{bmatrix} 3 & (2) & +3 \end{bmatrix} \frac{1}{3} = 2.080083823$
 $x_2 = \begin{bmatrix} 3 & (2.080083823) & +3 \end{bmatrix} \frac{1}{3} = 2.098430533$
 $x_3 = \begin{bmatrix} 3 & (2.098430533) & +3 \end{bmatrix} \frac{1}{3} = 2.102588765$
 $x_4 = \begin{bmatrix} 3 & (2.102588765) & +3 \end{bmatrix} \frac{1}{3} = 2.103528934$
So $x_4 = 2.10$ (3 s.f.)

(b)
$$27^{x} - 3^{x+1} - 3 = 0$$

(3³) $^{x} - 3$ (3^x) $- 3 = 0$
 $3^{3x} - 3$ (3^x) $- 3 = 0$
(3^x) $^{3} - 3$ (3^x) $- 3 = 0$
Let $y = 3^{x}$
then $y^{3} - 3y - 3 = 0$

(c) The root of the equation $y^3 - 3y - 3 = 0$ is x_4

so
$$y = 2.10$$
 (3 s.f.)
but $y = 3^x$
so $3^x = 2.10$
 $\ln 3^x = \ln 2.10$ Take logs of each side
 $x \ln 3 = \ln 2.10$ Simplify using $\ln a^b = b \ln a$
 $\frac{x \ln 3}{\ln 3} = \frac{\ln 2.10}{\ln 3}$ Divide each side by $\ln 3$
 $x = \frac{\ln 2.10}{\ln 3}$ Simplify
 $x = 0.6753...$
So $x = 0.68$ (2 s.f.)

[©] Pearson Education Ltd 2008

Edexcel AS and A Level Modular Mathematics

Exercise C, Question 8

Question:

The equation $x^x = 2$ has a solution near x = 1.5.

- (a) Use the iteration formula $x_{n+1} = 2^{\frac{1}{x_n}}$ with $x_0 = 1.5$ to find the approximate solution x_5 of the equation. Show the intermediate iterations and give your final answer to 4 decimal places.
- (b) Use the iteration formula $x_{n+1} = 2x_n^{(1-x_n)}$ with $x_0 = 1.5$ to find x_1, x_2, x_3, x_4 . Comment briefly on this sequence.

[E]

Solution:

(a)
$$x_0 = 1.5$$

 $x_1 = 2 \frac{1}{1.5} = 1.587401052$
 $x_2 = 2 \frac{1}{1.587401052} = 1.54752265$
 $x_3 = 2 \frac{1}{1.54752265} = 1.565034105$
 $x_4 = 2 \frac{1}{1.565034105} = 1.557210213$
 $x_5 = 2 \frac{1}{1.557210213} = 1.560679241$
So $x_5 = 1.5607$ (4 d.p.)

(b)
$$x_0 = 1.5$$

 $x_1 = 2 \times (1.5)^{-1 - (1.5)} = 1.632993162$
 $x_2 = 2 \times (1.632993162)^{-1 - (1.632993162)} = 1.466264596$
 $x_3 = 2 \times (1.466264596)^{-1 - (1.466264596)} = 1.673135301$
 $x_4 = 2 \times (1.673135301)^{-1 - (1.673135301)} = 1.414371012$

The sequence x_0 , x_1 , x_2 , x_3 , x_4 gets further from the root. It is a divergent sequence.

Edexcel AS and A Level Modular Mathematics

Exercise C, Question 9

Question:

- (a) Show that the equation $2^{1-x} = 4x + 1$ can be arranged in the form $x = \frac{1}{2} \left(2^{-x} \right) + q$, stating the value of the constant q.
- (b) Using the iteration formula $x_{n+1} = \frac{1}{2} \left(2^{-x_n} \right) + q$ with $x_0 = 0.2$ and the value of q found in part (a), find x_1 , x_2 , x_3 and x_4 . Give the value of x_4 , to 4 decimal places.

[E]

Solution:

(a)
$$2^{1-x} = 4x + 1$$

 $4x = 2^{1-x} - 1$ Subtract 1 from each side
 $4x = 2(2^{-x}) - 1$ Use $2^{a+b} = 2^a \times 2^b$ and $2^1 = 2^a \times 2^b = 2^a \times 2^b$

(b)
$$x_0 = 0.2$$

 $x_1 = \frac{1}{2} \left(2^{-0.2} \right) - \frac{1}{4} = 0.1852752816$
 $x_2 = \frac{1}{2} \left(2^{-0.1852752816} \right) - \frac{1}{4} = 0.1897406227$
 $x_3 = \frac{1}{2} \left(2^{-0.1897406227} \right) - \frac{1}{4} = 0.1883816687$
 $x_4 = \frac{1}{2} \left(2^{-0.1883816687} \right) - \frac{1}{4} = 0.1887947991$
So $x_4 = 0.1888$ (4 d.p.)

Edexcel AS and A Level Modular Mathematics

Exercise C, Question 10

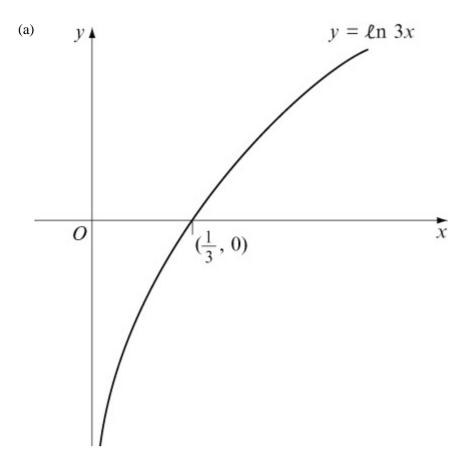
Question:

The curve with equation $y = \ln (3x)$ crosses the x-axis at the point P (p, 0).

- (a) Sketch the graph of $y = \ln(3x)$, showing the exact value of p. The normal to the curve at the point Q, with x-coordinate q, passes through the origin.
- (b) Show that x = q is a solution of the equation $x^2 + \ln 3x = 0$.
- (c) Show that the equation in part (b) can be rearranged in the form $x = \frac{1}{3}e^{-x^2}$.
- (d) Use the iteration formula $x_{n+1} = \frac{1}{3} e^{-x}$  n 2 , with $x_0 = \frac{1}{3}$, to find x_1 , x_2 , x_3 and x_4 . Hence write down, to 3 decimal places, an approximation for q.

[E]

Solution:



So
$$p = \frac{1}{3}$$

(b) ①
$$\frac{d}{dx} \ln 3x = \frac{1}{x}$$

So the gradient of the tangent at Q is $\frac{1}{q}$.

The gradient of the normal is -q (because the product of the gradients of perpendicular lines is -1).

The equation of the line with gradient -q that passes through (0, 0) is

$$y - y_1 = m (x - x_1)$$

$$y - 0 = -q(x - 0)$$

$$y = -qx$$

② The line y = -qx meets the curve $y = \ln 3x$ when

$$\ln 3x = -qx$$

We know they meet at Q.

So, substitute x = q into $\ln 3x = -qx$:

$$\ln 3q = -q (q)$$

$$ln 3q = -q^2$$

$$q^2 + \ln 3q = 0$$
 Add q^2 to each side

This is
$$x^2 + \ln 3x = 0$$
 with $x = q$

So x = q is a solution of the equation $x^2 + \ln 3x = 0$

(c)
$$x^2 + \ln 3x = 0$$

 $\ln 3x = -x^2$ Subtract x^2 from each side $3x = e^{-x^2}$ Use $\ln a = b \implies a = e^b$
 $x = \frac{1}{3}e^{-x^2}$ Divide each term by 3

(d)
$$x_0 = \frac{1}{3}$$

 $x_1 = \frac{1}{3}e^{-\left(\frac{1}{3}\right)^2} = 0.2982797723$
 $x_2 = \frac{1}{3}e^{-\left(0.2982797723\right)^2} = 0.3049574223$
 $x_3 = \frac{1}{3}e^{-\left(0.3049574223\right)^2} = 0.3037314616$
 $x_4 = \frac{1}{3}e^{-\left(0.3037314616\right)^2} = 0.3039581993$
So $x_4 = 0.304$ (3 d.p.)

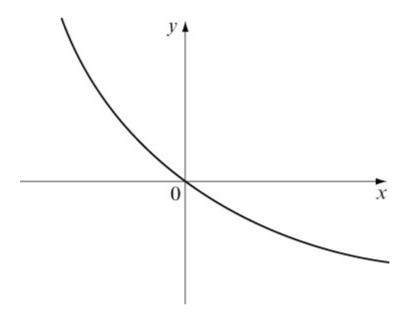
[©] Pearson Education Ltd 2008

Edexcel AS and A Level Modular Mathematics

Exercise C, Question 11

Question:

(a) Copy this sketch of the curve with equation $y = e^{-x} - 1$. On the same axes sketch the graph of $y = \frac{1}{2} \left(x - 1 \right)$, for $x \ge 1$, and $y = -\frac{1}{2} \left(x - 1 \right)$, for x < 1. Show the coordinates of the points where the graph meets the axes.



The x-coordinate of the point of intersection of the graphs is α .

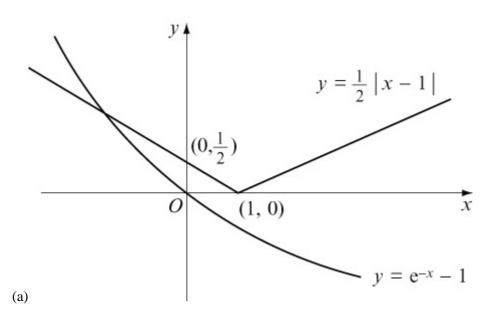
- (b) Show that $x = \alpha$ is a root of the equation $x + 2e^{-x} 3 = 0$.
- (c) Show that $-1 < \alpha < 0$.

The iterative formula $x_{n+1} = -\ln \left[\frac{1}{2} \left(3 - x_n \right) \right]$ is used to solve the equation $x + 2e^{-x} - 3 = 0$.

- (d) Starting with $x_0 = -1$, find the values of x_1 and x_2 .
- (e) Show that, to 2 decimal places, $\alpha = -0.58$.

[E]

Solution:



① Substitute
$$x = 0$$
 into $y = \frac{1}{2} \begin{vmatrix} x - 1 \end{vmatrix}$:

$$y = \frac{1}{2} \left| -1 \right| = \frac{1}{2}$$

So
$$y = \frac{1}{2} \mid x - 1 \mid$$
 meets the y-axis at $\left(0, \frac{1}{2}\right)$

② Substitute
$$y = 0$$
 into $y = \frac{1}{2} \begin{vmatrix} x - 1 \end{vmatrix}$:

$$\frac{1}{2} \mid x - 1 \mid = 0$$

$$x = 1$$

So
$$y = \frac{1}{2} \mid x - 1 \mid$$
 meets the x-axis at $(1, 0)$

(b) The equation of the branch of the curve for x < 1 is $y = \frac{1}{2} \left(1 - x \right)$.

This line meets the curve $y = e^{-x} - 1$ when

$$\frac{1}{2}\left(1-x\right) = e^{-x} - 1$$

$$(1-x) = 2 (e^{-x} - 1)$$
 Multiply each side by 2

$$1 - x = 2e^{-x} - 2$$
 Simplify

$$-x = 2e^{-x} - 3$$
 Subtract 1 from each side

$$0 = x + 2e^{-x} - 3$$
 Add x to each side

or
$$x + 2e^{-x} - 3 = 0$$

The line meets the curve when $x = \alpha$, so $x = \alpha$ is a root of the equation

$$x + 2e^{-x} - 3 = 0$$

(c) Let f (x) = $x + 2e^{-x} - 3$

$$f(-1) = (-1) + 2e^{-(-1)} - 3 = 1.44$$

$$f(0) = (0) + 2e^{-(0)} - 3 = -1$$

$$f(-1) > 0 \text{ and } f(0) < 0 \text{ so there is a change of sign.}$$

$$\Rightarrow \text{ There is a root between } x = -1 \text{ and } x = 0,$$
i.e. $-1 < \alpha < 0$

$$(d) x_0 = -1$$

$$x_1 = -\ln \left\{ \frac{1}{2} \left[3 - \left(-1 \right) \right] \right\} = -0.6931471806$$

$$x_2 = -\ln \left\{ \frac{1}{2} \left[3 - \left(-0.6931471806 \right) \right] \right\} = -0.6133318084$$

$$(e) x_3 = -\ln \left\{ \frac{1}{2} \left[3 - \left(-0.6133318084 \right) \right] \right\} = -0.5914831048$$

$$x_4 = -\ln \left\{ \frac{1}{2} \left[3 - \left(-0.5914831048 \right) \right] \right\} = -0.5854180577$$

$$x_5 = -\ln \left\{ \frac{1}{2} \left[3 - \left(-0.5854180577 \right) \right] \right\} = -0.5832563908$$

$$So \alpha = -0.58 (2 \text{ d.p.})$$