Solution Bank

Review Exercise 1

$$1 \frac{4x}{x^2 - 2x - 3} + \frac{1}{x^2 + x} = \frac{4x}{(x - 3)(x + 1)} + \frac{1}{x(x + 1)}$$
$$= \frac{4x(x) + 1(x - 3)}{x(x + 1)(x - 3)} = \frac{4x^2 + x - 3}{x(x + 1)(x - 3)}$$
$$= \frac{(x + 1)(4x - 3)}{(x + 1)x(x - 3)} = \frac{4x - 3}{x(x - 3)}$$

2 **a**
$$f(x) = 1 - \frac{3}{x+2} + \frac{3}{(x+2)^2}$$

$$= \frac{(x+2)^2 - 3(x+2) + 3}{(x+2)^2}$$

$$= \frac{x^2 + 4x + 4 - 3x - 6 + 3}{(x+2)^2}$$

$$= \frac{x^2 + x + 1}{(x+2)^2}$$

b
$$x^2 + x + 1 = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4}$$
 $\geqslant \frac{3}{4}$
 > 0

Use the method of completing the square
$$> 0$$

for all values of $x, x \neq 2$

As $\left(x + \frac{1}{2}\right)^2 \geqslant 0$

c
$$f(x) = \frac{x^2 + x + 1}{(x+2)^2}$$
 from (a)

$$\frac{x^2 + x + 1}{(x+2)^2} > 0$$
as $x^2 + x + 1 > 0$ from (b)
and $(x+2)^2 > 0$, for $x \ne -2$
So $f(x) > 0$, for $x \ne 2$

3
$$\frac{3x^2 + 6x - 2}{x^2 + 4} = d + \frac{ex + f}{x^2 + 4}$$

$$\Rightarrow 3x^2 + 6x - 2 = d(x^2 + 4) + ex + f$$
Compare coefficients of x^2 : $3 = d$
Compare coefficients of x : $6 = e$
Compare constant terms: $-2 = 4d + f$
So $f = -2 - 4d = -2 - 4(3) = -14$
Solution: $d = 3$, $e = 6$, $f = -14$

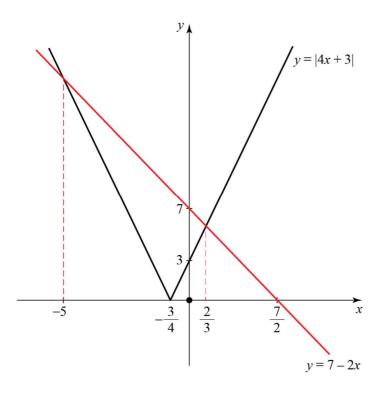
Solution Bank

4 First solve |4x-3| = 7-2x

$$x > -\frac{3}{4}$$
: $4x + 3 = 7 - 2x \Rightarrow x = \frac{2}{3}$

$$x < -\frac{3}{4} : -(4x+3) = 7 - 2x \Longrightarrow x = -5$$

Now draw the lines y=|4x+3| and y=7-2x



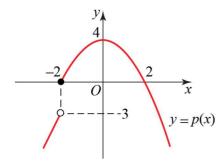
From the graph, we see that |4x+3| > 7-2x when x < -5 or $x > \frac{2}{3}$

5 a For x < -2, p(x) is a straight line with gradient 4.

At x = -2, there is a discontinuity. p(-2) = 0 so draw an open dot at (-2, -3) where the line section ends and a solid dot at (-2, 0) where p(x) is defined.

For x > -2, $p(x) = 4 - x^2$. There is a maximum at (0, 4) since $x^2 \ge 0$, and the curve intersects the x-axis at (2, 0) since $4 - x^2 = 0 \Rightarrow x = \pm 2$

From the diagram, the range is $p(x) \le 4$



Solution Bank

5 b
$$p(a) = -20$$

Check both sections of the domain for solutions.

$$x < -2$$
: $4x + 5 = -20 \Rightarrow x = -\frac{25}{4}$

This is less than -2 so it is a solution.

$$x \ge -2$$
: $4 - x^2 = -20 \Rightarrow x = \pm 2\sqrt{6}$

But $-2\sqrt{6} < -2$ so discard this possibility; $a = 2\sqrt{6} \ge 2$ so is a solution Solutions are $a = -\frac{25}{4}$, $a = 2\sqrt{6}$

6 a
$$qp(x) = 2\left(\frac{1}{x+4}\right) - 5 = \frac{2-5(x+4)}{x+4} = \frac{-5x-18}{x+4}, \ x \neq -4$$

Solutions are: a = -5, b = -18, c = 1, d = 4

b
$$qp(x) = 15$$

$$\Rightarrow \frac{-5x - 18}{x + 4} = 15$$

$$-5x - 18 = 15(x + 4) = 15x + 60$$

$$-5x - 18 = 15x + 60$$

$$20x = -78$$

$$x = -\frac{39}{10}$$

c Let
$$y = r(x)$$

$$y = \frac{-5x - 18}{x + 4}$$

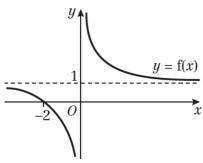
$$y(x + 4) = -5x - 18$$

$$x(y + 5) = -4y - 18$$

$$x = \frac{-4y - 18}{y + 5}$$
So $r^{-1}(x) = \frac{-4x - 18}{x + 5}$, $x \in \mathbb{R}$, $x \neq -5$

7 **a**
$$\frac{x+2}{x} = 1 + \frac{2}{x}$$

Sketch $y = \frac{1}{x}$, stretch by a factor of 2 in the y-direction, translate by $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$



Solution Bank

7 **b**
$$f^{2}(x) = f\left(\frac{x+2}{x}\right)$$

$$= \frac{\frac{x+2}{2}+2}{\frac{x+2}{x}}$$

$$= \frac{(3x+2)}{x} \times \frac{x}{(x+2)}$$

$$= \frac{3x+2}{x+2}$$

$$\mathbf{c} \quad gf\left(\frac{1}{4}\right) = g\left(\frac{2 + \frac{1}{4}}{\frac{1}{4}}\right) = g(9)$$

$$= \ln(18 - 5)$$

$$= \ln 13$$

d Let
$$y = \ln(2x - 5)$$

$$e^{y} = 2x - 5$$

$$\Rightarrow x = \frac{e^{y} + 5}{2}$$

$$g^{-1}(x) = \frac{e^{x} + 5}{2}, \quad x \in \mathbb{R}$$

The range of g(x) is $x \in \mathbb{R}$ so the domain of $g^{-1}(x)$ is $x \in \mathbb{R}$

8 a
$$pq(x) = 3(1-2x) + b = 3 + b - 6x$$

 $qp(x) = 1 - 2(3x + b) = 1 - 2b - 6x$
As $pq(x) = qp(x)$
 $\Rightarrow 3 + b - 6x = 1 - 2b - 6x$
 $\Rightarrow b = -\frac{2}{3}$

b Let
$$y = p(x)$$

$$y = 3x - \frac{2}{3}$$

$$\Rightarrow x = \frac{2+3y}{9}$$

$$p^{-1}(x) = \frac{3x+2}{9}$$
Let $z = q(x)$

$$z = 1-2x$$

$$\Rightarrow x = \frac{1-z}{2}$$

$$q^{-1}(x) = \frac{1-x}{2}$$

Solution Bank

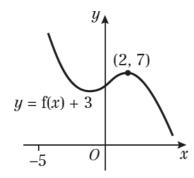
$$\mathbf{c} \quad \mathbf{p}^{-1}\mathbf{q}^{-1}(x) = \frac{2+3\left(\frac{1-x}{2}\right)}{9} = \frac{-3x+7}{18}$$

$$q^{-1}p^{-1}(x) = \frac{1 - \frac{2 + 3x}{9}}{2} = \frac{-3x + 7}{18}$$

So
$$p^{-1}q^{-1}(x) = q^{-1}p^{-1}(x)$$

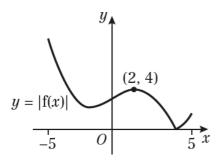
And
$$a = -3$$
, $b = 7$, $c = 18$

9 a Translation of +3 in the y direction. The maximum turning point is (2, 7).

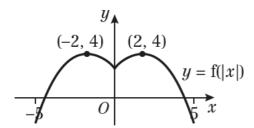


- **b** For $y \ge 0$, curve is y = f(x)
 - For y < 0, reflect in x-axis.

The maximum turning point is (2, 4)



c For x < 0, f|x| = f(-x), so draw y = f(x) for $x \ge 0$, and then reflect this in x = 0The maximum turning points are (-2, 4) and (2, 4)



Solution Bank

10 a To find intersections with the x-axis, solve h(x) = 0

$$2(x+3)^2 - 8 = 0$$

$$\Rightarrow (x+3)^2 = 4$$

$$\Rightarrow x = -3 \pm 2$$

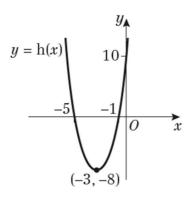
So there are intersections at (-5, 0) and (-1, 0)

To find intersections with the y-axis, find h(0)

$$h(0) = 2(3)^2 - 8 = 10$$

So there is an intersection at (0, 10)

Since $(x + 3)2 \ge 0$, there is a turning point (minimum) at (-3, -8)



b i
$$y = 3h(x+2)$$

$$\Rightarrow y = 3\left(2\left(x+2+3\right)^2 - 8\right)$$

$$\Rightarrow y = 6(x+5)^2 - 24$$

This has a turning point when x = -5 at (-5, -24)

$$ii \quad y = h(-x)$$

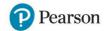
$$\Rightarrow y = 2(-x+3)^2 - 8$$

$$\Rightarrow y = 2(3-x)^2 - 8$$

This has a turning point when x = 3 at (3,-8)

iii The modulus of h(x) is the curve in part (a), with the section for -5 < x < -1 reflected in the x-axis. The turning point is (-3, 8)

Solution Bank

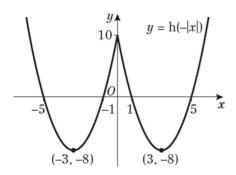


10 c On one graph, reflect h(x) in the y-axis to see what h(-x) looks like.

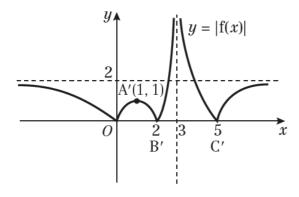
Now to obtain the sketch of h(-|x|), start a new graph,

copy h(-x) for $x \ge 0$, then reflect the result in the y-axis.

The x-intercepts are (-5, 0), (-1, 0), (1, 0), (5, 0); the y-intercept is (0, 10) and there are minimum turning points at (-3,-8) and (3,-8).



11 a i All parts of curve y = f(x) below the x-axis are reflected in x-axis. $A \rightarrow (1,1)$, B and C do not move.



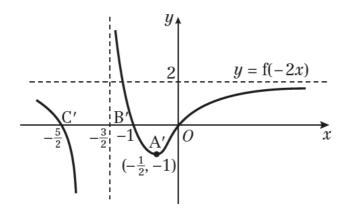
ii Translate by -1 in the x direction and reflect in the x-axis. $A \rightarrow (0,1), B \rightarrow (1,0), C \rightarrow (4,0)$



Solution Bank

11 a iii Stretch in the x direction with scale factor $\frac{1}{2}$ and reflect in the y-axis.

$$A \to (-\frac{1}{2}, -1), B \to (-1, 0), C \to (-\frac{5}{2}, 0)$$



b i
$$3|f(x)| = 2 \Rightarrow |f(x)| = \frac{2}{3}$$
 Number of solutions is 6

ii $2|f(x)| = 3 \Rightarrow |f(x)| = \frac{3}{2}$ Number of solutions is 4

12 a
$$q(x) = \frac{1}{2} |x+b| - 3$$

 $q(0) = \frac{|b|}{2} - 3 = \frac{3}{2} \Rightarrow |b| = 9$
 $b < 0$ so $b = -9$

b $A ext{ is } (9,-3)$ To find B: $x > 9 ext{ so solve } \frac{1}{2}(x-9) - 3 = 0$ $\Rightarrow x = 15$ So $B ext{ is } (15, 0)$

c
$$q(x) = \frac{1}{2}|x-9|-3 = -\frac{x}{3} + 5$$

 $x < 9$: $\frac{9-x}{2} - 3 = -\frac{x}{3} + 5$
 $3(9-x)-18 = -2x + 30$
 $27-18-30 = x$
 $x = -21$
 $x > 9$: $\frac{x-9}{2} - 3 = -\frac{x}{3} + 5$
 $3(x-9)-18 = -2x + 30$
 $5x = 27 + 18 + 30$
 $5x = 75$
 $x = 15$

Solution set; -21, 15

Consider graph a i

- i How many times does the line $y = \frac{2}{3}$ cross the curve? Line is below A'
- ii Draw the line $y = \frac{3}{2}$

Solution Bank

13 a
$$-\frac{5}{3}|x+4| \le 0 \Rightarrow \text{ range is } f(x) \le 8$$

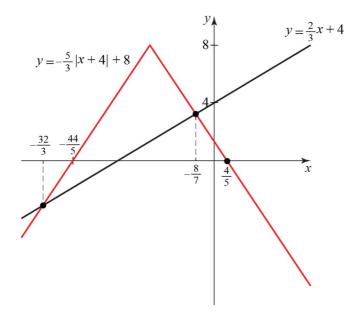
b Over the whole domain, f(x) is not a one-one function so it cannot have an inverse.

c First solve
$$-\frac{5}{3}|x+4|+8=\frac{2}{3}x+4$$

 $x < 4: \frac{5}{3}(x+4)+8=\frac{2}{3}x+4$
 $5(x+4)+24=2x+12$
 $3x=12-24-20$
 $x=-\frac{32}{3}$
 $x > 4: -\frac{5}{3}(x+4)+8=\frac{2}{3}x+4$
 $-5(x+4)+24=2x+12$
 $7x=-20+24-12$

Now sketch the lines $y = -\frac{5}{3} |x+4| + 8$ and $y = \frac{2}{3}x + 4$

 $x = -\frac{8}{7}$



From the graph we see that the inequality is satisfied in the region $-\frac{32}{3} < x < -\frac{8}{7}$

d From the sketch drawn from part (c), the equation will have no solutions if the line lies above the apex of f(x) at (-4, 8)

$$\Rightarrow \frac{5}{3}(-4) + k > 8$$

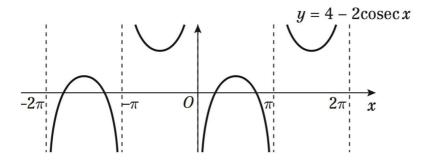
$$\Rightarrow k > 8 + \frac{20}{3}$$

$$\Rightarrow k > \frac{44}{3}$$

Solution Bank

14 a $y = 4 - 2\csc x$ is $y = \csc x$ stretched by a scale factor 2 in the y-direction,

then reflected in the x-axis and then translated by the vector $\begin{pmatrix} 0 \\ 4 \end{pmatrix}$



b The minima in the graph occur when cosec x = -1 and y = 6. The maxima occur when cosec x = 1 and y = 2. So there are no solutions for 2 < k < 6.

15 a The graph is a translation of $y = \sec \theta$ by α .

So
$$\alpha = \frac{\pi}{3}$$

b As the curve passes through (0, 4)

$$4 = k \sec \frac{\pi}{3} \Rightarrow k = 4 \cos \frac{\pi}{3} = 2$$

$$\mathbf{c} \quad -2\sqrt{2} = 2\sec\left(\theta - \frac{\pi}{3}\right)$$
$$\Rightarrow \cos\left(\theta - \frac{\pi}{3}\right) = -\frac{1}{\sqrt{2}}$$
$$\Rightarrow \theta - \frac{\pi}{3} = -\frac{5\pi}{4}, -\frac{3\pi}{4}$$
$$\Rightarrow \theta = -\frac{11\pi}{12}, -\frac{5\pi}{12}$$

16 a
$$\frac{\cos x}{1 - \sin x} + \frac{1 - \sin x}{\cos x} \equiv \frac{\cos^2 x + (1 - \sin x)^2}{\cos x (1 - \sin x)}$$
$$\equiv \frac{\cos^2 x + 1 - 2\sin x + \sin^2 x}{\cos x (1 - \sin x)}$$
$$\equiv \frac{2 - 2\sin x}{\cos x (1 - \sin x)}$$
$$\equiv \frac{2}{\cos x}$$
$$\equiv 2 \sec x$$

Solution Bank

16 b By part a the equation becomes

$$2 \sec x = -2\sqrt{2}$$

$$\Rightarrow \sec x = -\sqrt{2}$$

$$\Rightarrow \cos x = -\frac{1}{\sqrt{2}}$$

$$x = \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{11\pi}{4}, \frac{13\pi}{4}$$

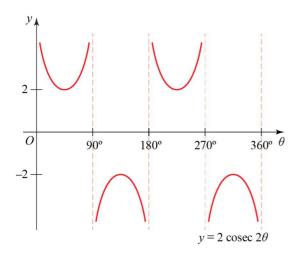
17 a
$$\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = \frac{\sin^2 \theta + \cos^2 \theta}{\cos \theta \sin \theta}$$

$$= \frac{1}{\sin \theta \cos \theta} \qquad \text{(using } \cos^2 \theta + \sin^2 \theta = 1\text{)}$$

$$= \frac{1}{\frac{1}{2} \sin 2\theta} \qquad \text{(using double-angle formula } \sin 2\theta = 2 \sin \theta \cos \theta\text{)}$$

$$= 2 \csc 2\theta$$

b The graph of $y = 2\csc 2\theta$ is a stretch of the graph of $y = \csc \theta$ by a scale factor of $\frac{1}{2}$ in the horizontal direction and then a stretch by a factor of 2 in the vertical direction.



c By part a the equation becomes

$$2\csc 2\theta = 3$$

$$\Rightarrow$$
 cosec $2\theta = \frac{3}{2}$

$$\Rightarrow \sin 2\theta = \frac{2}{3}$$
, in the interval $0 \le 2\theta \le 720^{\circ}$

Calculator value is
$$2\theta = 41.81^{\circ}$$
 (2 d.p.)

Solutions are
$$2\theta = 41.81^{\circ}, 180^{\circ} - 41.81^{\circ}, 360^{\circ} + 41.81^{\circ}, 540^{\circ} - 41.81^{\circ}$$

So the solution set is: 20.9°, 69.1°, 200.9°, 249.1°

Solution Bank

18 a Note the angle $BDC = \theta$

$$\cos \theta = \frac{BC}{10} \Rightarrow BC = 10\cos \theta$$

$$\sin \theta = \frac{BC}{BD} \Rightarrow BD = \frac{BC}{\sin \theta} = \frac{10\cos \theta}{\sin \theta} = 10\cot \theta$$

b
$$10 \cot \theta = \frac{10}{\sqrt{3}}$$

 $\Rightarrow \cot \theta = \frac{1}{\sqrt{3}}, \ \theta = \frac{\pi}{3}$

From the triangle BCD, $\cos \theta = \frac{DC}{BD}$

$$\Rightarrow DC = BD\cos\theta$$

So
$$DC = 10 \cot \theta \cos \theta$$
$$= 10 \left(\frac{1}{\sqrt{3}}\right) \left(\frac{1}{2}\right)$$
$$= \frac{5}{\sqrt{3}}$$

19 a
$$\sin^2 \theta + \cos^2 \theta = 1$$

$$\Rightarrow \frac{\sin^2 \theta}{\cos^2 \theta} + \frac{\cos^2 \theta}{\cos^2 \theta} = \frac{1}{\cos^2 \theta}$$
 (dividing by $\cos^2 \theta$)

$$\Rightarrow \tan^2 \theta + 1 = \sec^2 \theta$$

b
$$2\tan^2\theta + \sec\theta = 1$$

 $\Rightarrow 2\sec^2\theta - 2 + \sec\theta = 1$
 $\Rightarrow 2\sec^2\theta + \sec\theta - 3 = 0$
 $\Rightarrow (2\sec\theta + 3)(\sec\theta - 1) = 0$
 $\Rightarrow \sec\theta = -\frac{3}{2}, \sec\theta = 1$
 $\Rightarrow \cos\theta = -\frac{2}{3}, \cos\theta = 1$
Solutions are $131.8^\circ, 360^\circ - 131.8^\circ, 0^\circ$
So solution set is: $0.0^\circ, 131.8^\circ, 228.2^\circ$ (1 d.p.)

20 a
$$a = \frac{1}{\sin x} = \frac{1}{\frac{1}{2}b} = \frac{2}{b}$$

Solution Bank

20 b
$$\frac{4-b^2}{a^2-1} = \frac{4-b^2}{\left(\frac{2}{b}\right)^2 - 1}$$
$$= \frac{4-b^2}{\frac{4}{b^2}-1} = \frac{4-b^2}{\frac{4-b^2}{b^2}} = (4-b^2) \times \frac{b^2}{4-b^2}$$
$$= b^2$$

An alternative approach is to first substitute the trigonometric functions for a and b

$$\frac{4-b^2}{a^2-1} = \frac{4-4\sin^2 x}{\csc^2 x - 1}$$
$$= \frac{4(1-\sin^2 x)}{\cot^2 x}$$
$$= \frac{4\cos^2 x}{\cot^2 x}$$
$$= 4\sin^2 x = b^2$$

21 a
$$y = \arcsin x$$

 $\Rightarrow \sin y = x$
 $x = \cos(\frac{\pi}{2} - y)$
 $\Rightarrow \frac{\pi}{2} - y = \arccos x$
Using $\sin \theta = \cos(\frac{\pi}{2} - \theta)$

b
$$\arcsin x + \arccos x = y + \frac{\pi}{2} - y$$

= $\frac{\pi}{2}$

22 a
$$\arccos \frac{1}{x} = p \Rightarrow \cos p = \frac{1}{x}$$

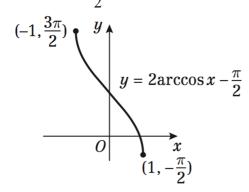
Use Pythagoras' theorem to show that opposite side of the right-angle triangle with angle p is

$$\sqrt{x^2 - 1}$$
So $\sin p = \frac{\sqrt{x^2 - 1}}{x} \Rightarrow p = \arcsin \frac{\sqrt{x^2 - 1}}{x}$

b If $0 \le x < 1$ then $x^2 - 1$ is negative and you cannot take the square root of a negative number.

Solution Bank

23 a $y = 2\arccos x - \frac{\pi}{2}$ is $y = \arccos x$ stretched by a scale factor of 2 in the y-direction and then translated by $-\frac{\pi}{2}$ in the vertical direction



- **b** $2\arccos x \frac{\pi}{2} = 0$ $\Rightarrow \arccos x = \frac{\pi}{4}$ $\Rightarrow x = \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$ Coordinates are $\left(\frac{1}{\sqrt{2}}, 0\right)$
- 24 $\tan\left(x + \frac{\pi}{6}\right) = \frac{1}{6} \Rightarrow \frac{\tan x + \frac{\sqrt{3}}{3}}{1 \frac{\sqrt{3}}{3}\tan x} = \frac{1}{6}$ [using the addition formula for $\tan(A + B)$] $6 \tan x + 2\sqrt{3} = 1 \frac{\sqrt{3}}{3}\tan x$ $\left(\frac{18 + \sqrt{3}}{3}\right) \tan x = 1 2\sqrt{3}$ $\tan x = \frac{3\left(1 2\sqrt{3}\right)\left(18 \sqrt{3}\right)}{\left(18 + \sqrt{3}\right)\left(18 \sqrt{3}\right)}$ $= \frac{72 111\sqrt{3}}{321}$

Solution Bank

25 a
$$\sin(x+30^\circ) = 2\sin(x-60^\circ)$$

So $\sin x \cos 30^\circ + \cos x \sin 30^\circ = 2(\sin x \cos 60^\circ - \cos x \sin 60^\circ)$ (using the addition formulae for sin)

$$\frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x = 2\left(\frac{1}{2}\sin x - \frac{\sqrt{3}}{2}\cos x\right)$$

$$\sqrt{3}\sin x + \cos x = 2\sin x - 2\sqrt{3}\cos x$$
 (multiplying both sides by 2)

$$\left(-2+\sqrt{3}\right)\sin x = \left(-1-2\sqrt{3}\right)\cos x$$

So
$$\tan x = \frac{-1 - 2\sqrt{3}}{-2 + \sqrt{3}}$$

$$= \frac{\left(-1 - 2\sqrt{3}\right)\left(-2 - \sqrt{3}\right)}{\left(-2 + \sqrt{3}\right)\left(-2 - \sqrt{3}\right)}$$

$$= \frac{2 + 6 + 4\sqrt{3} + \sqrt{3}}{4 - 3}$$

$$= 8 + 5\sqrt{3}$$

$$\mathbf{b} \quad \tan(x+60^\circ) = \frac{\tan x + \tan 60}{1 - \tan x \tan 60}$$

$$= \frac{8 + 5\sqrt{3} + \sqrt{3}}{1 - (8 + 5\sqrt{3})\sqrt{3}}$$

$$= \frac{8 + 6\sqrt{3}}{-14 - 8\sqrt{3}}$$

$$= \frac{(4 + 3\sqrt{3})(-7 + 4\sqrt{3})}{(-7 - 4\sqrt{3})(-7 + 4\sqrt{3})}$$

$$= \frac{36 - 28 - 21\sqrt{3} + 16\sqrt{3}}{49 - 48}$$

$$= 8 - 5\sqrt{3}$$

26 a
$$\sin 165^\circ = \sin(120^\circ + 45^\circ)$$

 $= \sin 120^\circ \cos 45^\circ + \cos 120^\circ \sin 45^\circ$
 $= \frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}} + \frac{-1}{2} \times \frac{1}{\sqrt{2}}$
 $= \frac{\sqrt{3} - 1}{2\sqrt{2}}$
 $= \frac{\sqrt{6} - \sqrt{2}}{4}$

Solution Bank

26 **b** cosec
$$165^\circ = \frac{1}{\sin 165^\circ}$$

$$= \frac{4}{\left(\sqrt{6} - \sqrt{2}\right)} \times \frac{\left(\sqrt{6} + \sqrt{2}\right)}{\left(\sqrt{6} + \sqrt{2}\right)}$$

$$= \frac{4\left(\sqrt{6} + \sqrt{2}\right)}{6 - 2}$$

$$= \frac{4\sqrt{6} + \sqrt{2}}{6 - 2}$$

27 a
$$\cos A = \frac{3}{4}$$

Using Pythagoras' theorem and noting that $\sin A$ is negative as A is in the fourth quadrant, this gives

$$\sin A = -\frac{\sqrt{7}}{4}$$

Using the double-angle formula for sin gives

$$\sin 2A = 2\sin A\cos A = 2\left(-\frac{\sqrt{7}}{4}\right)\left(\frac{3}{4}\right) = -\frac{3\sqrt{7}}{8}$$

$$\mathbf{b} \cos 2A = 2\cos^2 A - 1 = \frac{1}{8}$$

$$\Rightarrow \tan 2A = \frac{\sin 2A}{\cos 2A} = \frac{\left(-\frac{3\sqrt{7}}{8}\right)}{\left(\frac{1}{8}\right)} = -3\sqrt{7}$$

28 a
$$\cos 2x + \sin x = 1$$

$$\Rightarrow 1 - 2\sin^2 x + \sin x = 1$$
 (using double-angle formula for $\cos 2x$)

$$\Rightarrow 2\sin^2 x - \sin x = 0$$

$$\Rightarrow \sin x(2\sin x - 1) = 0$$

$$\Rightarrow \sin x = 0, \sin x = \frac{1}{2}$$

Solutions in the given interval are: -180° , 0° , 30° , 150° , 180°

$$\mathbf{b} \quad \sin x (\cos x + \csc x) = 2\cos^2 x$$

$$\Rightarrow \sin x \cos x + 1 = 2\cos^2 x$$

$$\Rightarrow$$
 in $x \cos x = 2 \cos^2 x - 1$

$$\Rightarrow \frac{1}{2}\sin 2x = \cos 2x$$
 (using the double-angle formulae for $\sin 2x$ and $\cos 2x$)

$$\Rightarrow \tan 2x = 2$$
, for $-360^{\circ} \leqslant 2x \leqslant 360^{\circ}$

So
$$2x = 63.43^{\circ} - 360^{\circ}$$
, $63.43^{\circ} - 180^{\circ}$, 63.43° , $63.43^{\circ} + 180^{\circ}$

Solution Bank

29 a
$$R\sin(x+\alpha) = R\sin x \cos \alpha + R\cos x \sin \alpha$$

So $R\cos \alpha = 3$, $R\sin \alpha = 2$
 $R^2\cos^2 \alpha + R^2\sin^2 \alpha = 3^2 + 2^2 = 9 + 4 = 13$
 $\Rightarrow R = \sqrt{13}$ (as $\cos^2 \alpha + \sin^2 \alpha = 1$)
 $\tan \alpha = \frac{2}{3} \Rightarrow \alpha = 0.588$ (3 d.p.)

b $R^4 = \left(\sqrt{13}\right)^4 = 169$ since the maximum value the sin function can take is 1

c
$$\sqrt{13}\sin(x+0.588) = 1$$

 $\sin(x+0.5880) = \frac{1}{\sqrt{13}} = 0.27735...$
 $x+0.588 = \pi - 0.281, 2\pi + 0.281$
 $x = 2.273, 5.976$

30 a LHS
$$\equiv \cot \theta - \tan \theta$$

$$\equiv \frac{\cos \theta}{\sin \theta} - \frac{\sin \theta}{\cos \theta}$$

$$\equiv \frac{\cos^2 \theta - \sin^2 \theta}{\sin \theta \cos \theta}$$

$$\equiv \frac{\cos 2\theta}{\frac{1}{2} \sin 2\theta}$$
 (using the double angle formulae for $\sin 2\theta$ and $\cos 2\theta$)

$$\equiv 2 \cot 2\theta \equiv \text{RHS}$$

b
$$2 \cot 2\theta = 5 \Rightarrow \cot 2\theta = \frac{5}{2} \Rightarrow \tan 2\theta = \frac{2}{5}$$
, for $-2\pi < 2\theta < 2\pi$
So $2\theta = 0.3805 - 2\pi$, $0.3805 - \pi$, 0.3805 , $0.3805 + \pi$
Solution set: -2.95 , -1.38 , 0.190 , 1.76

31 a LHS
$$\equiv \cos 3\theta$$

 $\equiv \cos(2\theta + \theta)$
 $\equiv \cos 2\theta \cos \theta - \sin 2\theta \sin \theta$
 $\equiv (\cos^2 \theta - \sin^2 \theta) \cos \theta - (2\sin \theta \cos \theta) \sin \theta$
 $\equiv \cos^3 \theta - 3\sin^2 \theta \cos \theta$
 $\equiv \cos^3 \theta - 3(1 - \cos^2 \theta) \cos \theta$
 $\equiv 4\cos^3 \theta - 3\cos \theta \equiv \text{RHS}$

b From part a
$$\cos 3\theta = 4\frac{2\sqrt{2}}{27} - \sqrt{2} = -\frac{19\sqrt{2}}{27}$$

So $\sec 3\theta = -\frac{27}{19\sqrt{2}} = -\frac{27\sqrt{2}}{38}$

Solution Bank

$$32 \sin^4 \theta = (\sin^2 \theta)(\sin^2 \theta)$$

Use the double-angle formula to write $\sin^2 \theta$ in terms of $\cos 2\theta$

$$\cos 2\theta = 1 - \sin^2 \theta \Rightarrow \sin^2 \theta = \frac{1 - \cos 2\theta}{2}$$

Now substitute the expression for $\sin^2 \theta$ and expand the brackets

So
$$\sin^4 \theta = \left(\frac{1 - \cos 2\theta}{2}\right) \left(\frac{1 - \cos 2\theta}{2}\right)$$
$$= \frac{1}{4} \left(1 - 2\cos 2\theta + \cos^2 2\theta\right)$$

Again use the double-angle formula to write $\cos^2 2\theta$ in terms of $\cos 4\theta$

So
$$\sin^4 \theta = \frac{1}{4} \left(1 - 2\cos 2\theta + \frac{1 + \cos 4\theta}{2} \right)$$

= $\frac{3}{8} - \frac{1}{2}\cos 2\theta + \frac{1}{8}\cos 4\theta$

Challenge

1 a B is located where
$$g(x) = -\frac{3}{4}x + \frac{3}{2} = 0 \Rightarrow x = 2$$

So B has coordinates (2,0)

To find *A* solve f(x) = g(x) for x < -3

$$3(x+3)+15=-\frac{3}{4}x+\frac{3}{2}$$

$$\Rightarrow$$
 12 x + 96 = -3 x + 6

$$\Rightarrow 15x = -90$$

$$\Rightarrow x = -6$$

$$g(-6) = f(-6) = 6$$

So A has coordinates (-6,6)

M is the midpoint of A and so has coordinates $\left(\frac{-6+2}{2},\frac{6+0}{2}\right) = (-2,3)$

To find the radius of the circle, use Pythagoras' theorem to find the length of MA:

$$|MA| = \sqrt{(2 - (-2))^2 + (3 - 0)^2} = \sqrt{25} = 5$$

Therefore the equation of the circle is

$$(x+2)^2 + (y-3)^2 = 25$$

Solution Bank

Challenge

1 b For
$$x < -3$$
, $f(x) = 3(x+3) + 15 = 3x + 24$

Substituting y = 3x + 24 into the equation of the circle

$$(x+2)^2 + (3x+21)^2 = (x+2)^2 + 9(x+7)^2 = 25$$

$$\Rightarrow 10x^2 + 130x + 420 = 0$$

$$\Rightarrow$$
 $x^2 + 13x + 42 = 0$

$$\Rightarrow$$
 $(x+7)(x+6)=0$

Solutions
$$x = -7$$
, $x = -7$

From the diagram, at Px = -7, and f(x) = -12 + 15 = 3

So P has coordinates (-7,3)

Angle $\angle APB = 90^{\circ}$ by circle theorems so the area of the triangle is $\frac{1}{2} |AP| |PB|$

$$|AP| = \sqrt{1^2 + 3^2} = \sqrt{10}$$

$$|PB| = \sqrt{9^2 + 3^2} = \sqrt{90} = 3\sqrt{10}$$

Area =
$$\frac{1}{2}(\sqrt{10})(3\sqrt{10}) = 15$$

2
$$p(x) = |x^2 - 8x + 12| = |(x-6)(x-2)|$$

$$q(x) = |x^2 - 11x + 28| = |(x-4)(x-7)|$$

To find the *x*-coordinate of *A* solve

$$-x^2 + 8x - 12 = x^2 - 11x + 28$$

$$\Rightarrow 2x^2 - 19x + 40 = 0$$

$$\Rightarrow x = \frac{19 - \sqrt{361 - 4(2)(40)}}{2(2)} = \frac{19 - \sqrt{41}}{4}$$

Using the quadratic formula, and from the graph we know to take the negative square root.

To find the *x*-coordinate of *B* solve

$$-x^2 + 8x - 12 = -x^2 + 11x - 28$$

$$\Rightarrow x = \frac{16}{3}$$

To find the *x*-coordinate of *C* solve

$$x^2 - 8x + 12 = -x^2 + 11x - 28$$

$$\Rightarrow 2x^2 - 19x + 40 = 0$$

$$\Rightarrow x = \frac{19 + \sqrt{41}}{4}$$

Taking the positive square root this time.

Solution is
$$A: \frac{19-\sqrt{41}}{4}, B: \frac{16}{3}, C: \frac{19+\sqrt{41}}{4}$$

Solution Bank

Challenge

- 3 a $\sin x$
 - $\mathbf{b} \cos x$

c
$$\angle COA = \frac{\pi}{2} - x \Rightarrow \angle CAO = x$$

 $OA = 1 \div \sin x = \csc x$

$$\mathbf{d} \quad AC = 1 \div \tan x = \cot x$$

- e tan x
- $\mathbf{f} \quad OB = 1 \div \cos x = \sec x$