[3]

Core Mathematics 3 Paper I

1. A balloon is filled with air at a constant rate of 80 cm³ per second.

Assuming that the balloon is spherical as it is filled, find to 3 significant figures the rate at which its radius is increasing at the instant when its radius is 6 cm. [5]

2. Solve the equation

$$3 \csc \theta^{\circ} + 8 \cos \theta^{\circ} = 0$$

for θ in the interval $0 \le \theta \le 180$, giving your answers to 1 decimal place. [6]

3. (a) Given that $y = \ln x$,

(i) find an expression for
$$\ln \frac{x^2}{e}$$
 in terms of y, [2]

(ii) show that
$$\log_2 x = \frac{y}{\ln 2}$$
. [3]

(b) Hence, or otherwise, solve the equation

$$\log_2 x = 4 - \ln \frac{x^2}{e},$$

giving your answer to 2 decimal places.

4.

The diagram shows the curves $y = (x - 1)^2$ and $y = 2 - \frac{2}{x}$, x > 0.

(i) Verify that the two curves meet at the points where x = 1 and where x = 2. [2]

The shaded region bounded by the two curves is rotated completely about the *x*-axis.

(ii) Find the exact volume of the solid formed. [7]

5.
$$f(x) = 5 + e^{2x-3}, x \in \mathbb{R}.$$

(ii) Find an expression for
$$f^{-1}(x)$$
 and state its domain. [3]

(iii) Solve the equation
$$f(x) = 7$$
. [2]

- (iv) Find an equation for the tangent to the curve y = f(x) at the point where y = 7. [4]
- **6.** (i) Express $\sqrt{3} \sin \theta + \cos \theta$ in the form $R \sin (\theta + \alpha)$ where R > 0 and $0 < \alpha < \frac{\pi}{2}$. [3]
 - (ii) State the maximum value of $\sqrt{3} \sin \theta + \cos \theta$ and the smallest positive value of θ for which this maximum value occurs. [3]
 - (iii) Solve the equation

$$\sqrt{3}\sin\theta + \cos\theta + \sqrt{3} = 0,$$

for θ in the interval $-\pi \le \theta \le \pi$, giving your answers in terms of π . [4]

7.
$$f(x) = \frac{x^2 + 3}{4x + 1}, \quad x \in \mathbb{R}, \quad x \neq -\frac{1}{4}.$$

- (i) Find and simplify an expression for f'(x). [3]
- (ii) Find the set of values of x for which f(x) is increasing. [4]
- (iii) Use Simpson's rule with six strips to find an approximate value for

$$\int_0^6 f(x) dx.$$
 [3]

Turn over

8. The functions f and g are defined by

$$f: x \to |2x-5|, x \in \mathbb{R},$$

$$g: x \to \ln(x+3), x \in \mathbb{R}, x > -3.$$

- (i) State the range of f. [1]
- (ii) Evaluate fg(-2). [2]
- (iii) Solve the equation

$$fg(x) = 3$$
,

giving your answers in exact form.

[5]

(iv) Show that the equation

$$f(x) = g(x)$$

has a root, α , in the interval [3, 4].

[2]

(v) Use the iterative formula

$$x_{n+1} = \frac{1}{2} [5 + \ln (x_n + 3)],$$

with $x_0 = 3$, to find x_1 , x_2 , x_3 and x_4 , giving your answers to 4 significant figures. [2]

(vi) Show that your answer for x_4 is the value of α correct to 4 significant figures. [2]