Core Mathematics 3 Paper F

1. Evaluate

$$\int_{2}^{6} \sqrt{3x-2} \, \mathrm{d}x. \tag{4}$$

2. Differentiate each of the following with respect to x and simplify your answers.

$$(i) \qquad \frac{6}{\sqrt{2x-7}} \tag{2}$$

(ii)
$$x^2 e^{-x}$$
 [3]

3. *(i)* Prove the identity

$$\sqrt{2}\cos(x+45)^{\circ} + 2\cos(x-30)^{\circ} \equiv (1+\sqrt{3})\cos x^{\circ}.$$
 [4]

- (ii) Hence, find the exact value of $\cos 75^{\circ}$ in terms of surds. [3]
- **4.** $f(x) = x^2 + 5x 2 \sec x, \quad x \in \mathbb{R}, \quad -\frac{\pi}{2} < x < \frac{\pi}{2}.$
 - (i) Show that the equation f(x) = 0 has a root, α , such that $1 < \alpha < 1.5$ [2]
 - (ii) Show that a suitable rearrangement of the equation f(x) = 0 leads to the iterative formula

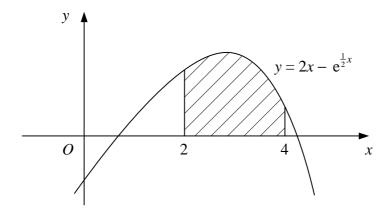
$$x_{n+1} = \cos^{-1}\left(\frac{2}{x_n^2 + 5x_n}\right).$$
 [3]

- (iii) Use the iterative formula in part (ii) with a starting value of 1.25 to find α correct to 3 decimal places. You should show the result of each iteration. [3]
- **5.** The function f is defined by

$$f(x) \equiv 2 + \ln (3x - 2), \quad x \in \mathbb{R}, \quad x > \frac{2}{3}.$$

- (i) Find the exact value of ff(1). [2]
- (ii) Find an equation for the tangent to the curve y = f(x) at the point where x = 1. [4]
- (iii) Find an expression for $f^{-1}(x)$. [2]

[5]


6. (i) Sketch on the same diagram the graphs of y = |x| - a and y = |3x + 5a|, where a is a positive constant.

Show on your diagram the coordinates of any points where each graph meets the coordinate axes.

(ii) Solve the equation

$$\left| x \right| - a = \left| 3x + 5a \right|. \tag{4}$$

7.

The diagram shows the curve with equation $y = 2x - e^{\frac{1}{2}x}$.

The shaded region is bounded by the curve, the x-axis and the lines x = 2 and x = 4.

(i) Find the area of the shaded region, giving your answer in terms of e. [4]

The shaded region is rotated through four right angles about the *x*-axis.

- (ii) Using Simpson's rule with two strips, estimate the volume of the solid formed. [5]
- **8.** (i) Sketch on the same diagram the graphs of

$$y = \sin^{-1} x, -1 \le x \le 1$$

and

$$y = \cos^{-1}(2x), -\frac{1}{2} \le x \le \frac{1}{2}.$$
 [3]

Given that the graphs intersect at the point with coordinates (a, b),

(ii) show that
$$\tan b = \frac{1}{2}$$
, [3]

(iii) find the value of a in the form
$$k\sqrt{5}$$
. [4]

Turn over

9.
$$f(x) = e^{3x+1} - 2, x \in \mathbb{R}.$$

(i) State the range of f. [1]

The curve y = f(x) meets the y-axis at the point P and the x-axis at the point Q.

- (ii) Find the exact coordinates of P and Q. [3]
- (iii) Show that the tangent to the curve at P has the equation

$$y = 3ex + e - 2.$$
 [4]

(*iv*) Find to 3 significant figures the *x*-coordinate of the point where the tangent to the curve at *P* meets the tangent to the curve at *Q*. [4]