Core Mathematics 3 Paper D

1.(i) Show that

$$\sin (x+30)^{\circ} + \sin (x-30)^{\circ} \equiv a \sin x^{\circ},$$

where a is a constant to be found.

- [3]
- (ii) Hence find the exact value of $\sin 75^{\circ} + \sin 15^{\circ}$, giving your answer in the form $b\sqrt{6}$.
- [3]

2. Solve each equation, giving your answers in exact form.

(i)
$$\ln(2x-3) = 1$$
 [2]

(ii)
$$3e^y + 5e^{-y} = 16$$
 [5]

- 3. The curve C has the equation $y = 2e^x 6 \ln x$ and passes through the point P with x-coordinate 1.
 - (i) Find an equation for the tangent to C at P. [4]

The tangent to *C* at *P* meets the coordinate axes at the points *Q* and *R*.

- (ii) Show that the area of triangle OQR, where O is the origin, is $\frac{9}{3-e}$. [4]
- **4.** The finite region *R* is bounded by the curve with equation $y = \frac{1}{2x-1}$, the *x*-axis and the lines x = 1 and x = 2.
 - (i) Find the exact area of R. [4]
 - (ii) Show that the volume of the solid formed when R is rotated through four right angles about the x-axis is $\frac{1}{3}\pi$. [4]

5.

The diagram shows the graph of y = f(x). The graph has a minimum at $(\frac{\pi}{2}, -1)$, a maximum at $(\frac{3\pi}{2}, -5)$ and an asymptote with equation $x = \pi$.

(i) Showing the coordinates of any stationary points, sketch the graph of y = |f(x)|. [2] Given that

$$f: x \to a + b \csc x, x \in \mathbb{R}, 0 < x < 2\pi, x \neq \pi$$

- (ii) find the values of the constants a and b, [3]
- (iii) find, to 2 decimal places, the x-coordinates of the points where the graph of y = f(x) crosses the x-axis. [3]
- **6.** (i) Prove the identity

$$2 \cot 2x + \tan x \equiv \cot x, \quad x \neq \frac{n}{2}\pi, \quad n \in \mathbb{Z}.$$
 [5]

(ii) Solve, for $0 \le x < \pi$, the equation

$$2 \cot 2x + \tan x = \csc^2 x - 7,$$

giving your answers to 2 decimal places.

Turn over

[6]

7. The function f is defined by

$$f: x \to 3e^{x-1}, x \in \mathbb{R}.$$

- (i) State the range of f. [1]
- (ii) Find an expression for $f^{-1}(x)$ and state its domain. [3]

The function g is defined by

$$g: x \to 5x - 2, x \in \mathbb{R}.$$

Find, in terms of e,

- (iii) the value of $gf(\ln 2)$, [3]
- (iv) the solution of the equation

$$f^{-1}g(x) = 4.$$
 [4]

- **8.** A curve has the equation $y = x^2 \sqrt{4 + \ln x}$.
 - (i) Show that the tangent to the curve at the point where x = 1 has the equation

$$7x - 4y = 11.$$
 [5]

The curve has a stationary point with x-coordinate α .

(ii) Show that
$$0.3 < \alpha < 0.4$$
 [3]

(iii) Show that α is a solution of the equation

$$x = \frac{1}{2} (4 + \ln x)^{-\frac{1}{4}}.$$
 [2]

(iv) Use the iterative formula

$$x_{n+1} = \frac{1}{2} (4 + \ln x_n)^{-\frac{1}{4}},$$

with $x_0 = 0.35$, to find α correct to 5 decimal places.

You should show the result of each iteration. [3]