Core Mathematics 3 Paper B I. Find the set of values of x such that

1.

$$\left|2x-3\right| > \left|x+2\right|. \tag{5}$$

2. Find, to 2 decimal places, the solutions of the equation

$$3\cot^2 x - 4\csc x + \csc^2 x = 0$$

in the interval $0 \le x \le 2\pi$.

[6]

- A curve has the equation $x = y^2 3 \ln 2y$. **3.**
 - *(i)* Show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{2y^2 - 3}.$$
 [3]

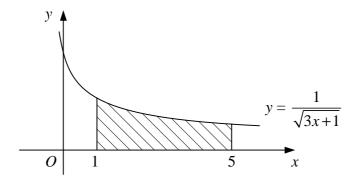
- Find an equation for the tangent to the curve at the point where $y = \frac{1}{2}$. Give your answer in the form ax + by + c = 0 where a, b and c are integers. [3]
- Use Simpson's rule with four intervals, each of width 0.25, to estimate the 4. *(i)* value of the integral

$$\int_0^1 x e^{2x} dx.$$
 [3]

Find the exact value of the integral (ii)

$$\int_{\frac{1}{2}}^{1} e^{1-2x} dx.$$
 [4]

5.



The diagram shows the curve with equation $y = \frac{1}{\sqrt{3x+1}}$.

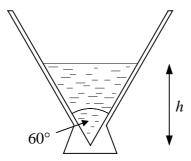
The shaded region is bounded by the curve, the x-axis and the lines x = 1 and x = 5.

(i) Find the area of the shaded region.

The shaded region is rotated through four right angles about the *x*-axis.

(ii) Find the volume of the solid formed, giving your answer in the form $k\pi \ln 2$. [4]

6.



The diagram shows a vertical cross-section through a vase.

The inside of the vase is in the shape of a right-circular cone with the angle between the sides in the cross-section being 60° . When the depth of water in the vase is h cm, the volume of water in the vase is $V \text{ cm}^3$.

(a) Show that
$$V = \frac{1}{9} \pi h^3$$
. [2]

The vase is initially empty and water is poured in at a constant rate of 120 cm³ s⁻¹.

(b) Find, to 2 decimal places, the rate at which h is increasing

(i) when
$$h = 6$$
, [5]

(ii) after water has been poured in for 8 seconds. [2]

Turn over

[4]

[4]

7. (i) Prove that, for $\cos x \neq 0$,

$$\sin 2x - \tan x \equiv \tan x \cos 2x.$$
 [5]

(ii) Hence, or otherwise, solve the equation

$$\sin 2x - \tan x = 2\cos 2x,$$

for x in the interval $0 \le x \le 180^{\circ}$.

8. A rock contains a radioactive substance which is decaying. The mass of the rock, *m* grams, at time *t* years after initial observation is given by

$$m = 400 + 80e^{-kt}$$
.

where k is a positive constant.

Given that the mass of the rock decreases by 0.2% in the first 10 years, find

- (i) the value of k, [5]
- (ii) the value of t when m = 475, [2]
- (iii) the rate at which the mass of the rock is decreasing when t = 100. [4]
- **9.** $f(x) = 3 e^{2x}, x \in \mathbb{R}.$
 - (i) State the range of f. [1]
 - (ii) Find the exact value of ff(0). [2]
 - (iii) Define the inverse function $f^{-1}(x)$ and state its domain. [3]

Given that α is the solution of the equation $f(x) = f^{-1}(x)$,

(iv) explain why α satisfies the equation

$$x = f^{-1}(x),$$
 [2]

(v) use the iterative formula

$$x_{n+1} = f^{-1}(x_n)$$

with $x_0 = 0.5$ to find α correct to 3 significant figures. [3]