

Mathematics in Education and Industry

MEI STRUCTURED MATHEMATICS

METHODS FOR ADVANCED MATHEMATICS, C3

Practice Paper C3-B

Additional materials:	Answer booklet/paper
	Graph paper
	List of formulae (MF2)

TIME 1 hour 30 minutes

INSTRUCTIONS

- Write your Name on each sheet of paper used or the front of the booklet used.
- There is an Insert booklet for use in Question 9.
- Answer **all** the questions.
- You are permitted to use a graphical calculator in this paper.

INFORMATION

- The number of marks is given in brackets [] at the end of each question or part-question.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The total number of marks for this paper is **72**.
- You are reminded of the need for clear presentation in your answers.

Section A (36 marks)

1	Prov	the that the product of any three consecutive integers is a multiple of 6.	[4]
2	(i)	Sketch the graph of $y = 2x-3 $.	[2]
	(ii)	Hence, or otherwise, solve the inequality $ 2x-3 < 5$. Illustrate your answer on your graph.	[2]

3 Differentiate the following functions.

(i)
$$y = (x^2 + 3)^3$$
 [3]

$$y = \frac{\sin 2x}{x}$$
[3]

[5]

- 4 A curve has equation $y^2 = 5x 4$. Find the gradient of the curve at the points where x = 8.
- 5 Given that x and t are related by the formula $x = x_0 e^{-3t}$, show that $t = \ln\left(\frac{a}{x}\right)^b$ where a and b

6 (i) Find
$$\int (2x-3)^7 dx$$
. [3]

(ii) Use the substitution
$$u = x^2 + 1$$
, or otherwise, to find $\int_{1}^{2} x(x^2 + 1)^3 dx$. [5]

7 The functions f, g and h are defined as follows.

$$f(x) = 2x$$
 $g(x) = x^2$ $h(x) = x + 2$

Find each of the following as functions of *x*.

- (i) $f^{2}(x)$, [1]
- (ii) fgh(x), [3]
- (iii) $h^{-1}(x)$. [1]

Section B (36 marks)

8

A c	urve has equation $y = (x+2)e^{-x}$.	
(i)	Find the coordinates of the points where the curve cuts the axes.	[2]
(ii)	Find the coordinates of the stationary point, S, on the curve.	[4]
(iii)	By evaluating $\frac{d^2 y}{dx^2}$ at S, determine whether the stationary point is a maximum or a minimum.	[3]
(iv)	Sketch the curve in the domain $-3 < x < 3$.	[1]
(v)	Find where the normal to the curve at the point $(0, 2)$ cuts the curve again.	[3]
(vi)	Find the area of the region bounded by the curve, the <i>x</i> -axis and the lines $x = 1$ and $x = 3$.	[5]

9 Answer parts (i) and (iii) on the insert provided.

Fig. 9 shows a sketch graph of y = f(x).



Fig. 9

(i) On the Insert sketch graphs of

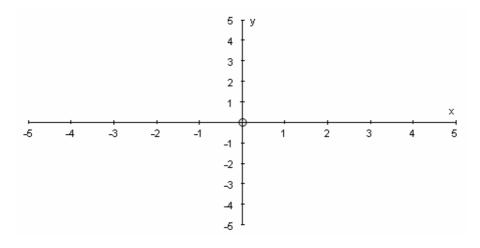
(A) y = 2f(x), (B) y = f(-x), (C) y = f(x-2)

	In each case describe the transformations.	[8]
(ii)	Explain why the function $y = f(x)$ does not have an inverse function.	[2]
(iii)	The function $g(x)$ is defined as follows: $g(x) = f(x)$ for $x \ge 0$	
	On the Insert sketch the graph of $y = g^{-1}(x)$.	[1]
(iv)	You are given that $f(x) = x^2(x + 2)$. Calculate the gradient of the curve $y = f(x)$ at the point (1, 3).	

- Deduce the gradient of the function $g^{-1}(x)$ at the point where x = 3. [4]
- (v) Show that g(x) and $g^{-1}(x)$ cross where $x = -1 + \sqrt{2}$. [3]

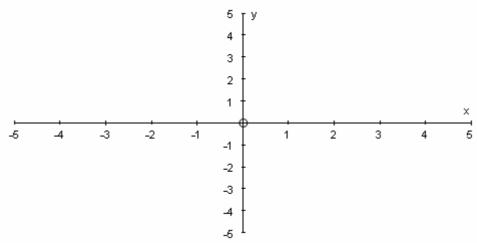
Insert for question 9.

(i) (A) On the axes below sketch the graph of y = 2f(x). Describe the transformation.


> 5 у 4 3 2 1 х --5 -5 -3 -2 ż 3 -4 -1 1 4 -1 -2 -3 -4 -6

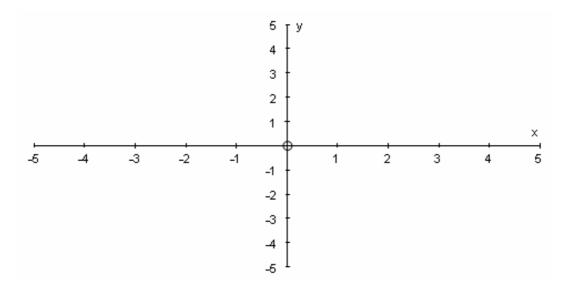
[2]

[3]


Description:

(i) (*B*) On the axes below sketch the graph of y = f(-x). Describe the transformation.

Description:


(i) (*C*) On the axes below sketch the graph of y = f(x - 2). Describe the transformation.

Description:

(iii) The function g(x) is defined as follows: g(x) = f(x) for $x \ge 0$

On the axes below sketch the graph of
$$y = g^{-1}(x)$$
. [1]

