

Mathematics in Education and Industry

MEI STRUCTURED MATHEMATICS

METHODS OF ADVANCED MATHEMATICS, C3

Practice Paper C3-B

MARK SCHEME

© MEI February 2005

Qu		Answer	Mark	Comment			
Sect	Section A						
1		Call the numbers n , $n + 1$ and $n + 2$ At least one of the numbers is even, and so the product is a multiple of 2.	B1 M1	Algebra Divisibility by 2			
		If <i>n</i> is a multiple of 3 then so is the product. If $n = 3k + 1$ then $n + 2$ is a multiple of 3 If $n = 3k + 2$ then $n + 1$ is a multiple of 3.	M1	Divisibility by 3			
		<i>n</i> must have one of the forms $3k$, $3k + 1$ or $3k + 2$. Therefore whichever it is one of the three numbers is a multiple of 3 and so the product is a multiple of 3.	E1	conclusion			
2	(i)	Since it is also a multiple of 2 it is a multiple of 6.	81 B1	Right part			
			B1 2	Left part			
	(ii)	Line $y = 5$ to be shown on graph. -1 < $x < 4$	M1 A1 2				
3	(i)	$y = (x^2 + 3)^5$ Let $u = x^2 + 3 \Longrightarrow \frac{du}{dx} = 2x$	M1 A1	Chain rule $\frac{dy}{du}$			
		$y = u^{5} \Longrightarrow \frac{dy}{du} = 5u^{4}$ $\Longrightarrow \frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = 5u^{4} \times 2x = 10x(x^{2} + 3)^{4}$	A1 3				
	(ii)	$y = \frac{\sin 2x}{x}$ Let $u = \sin 2x \Rightarrow \frac{du}{dx} = 2\cos 2x$	M1 A1	Quotient rule			
		$v = x \Longrightarrow \frac{dv}{dx} = 1$ $dv = v \frac{du}{dx} - u \frac{dv}{dx} = 2x\cos 2x - \sin 2x$	A1				
4		$\Rightarrow \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} = \frac{2x \cos 2x - \sin 2x}{x^2}$ $y^2 = 5x - 4 \Rightarrow 2y \frac{dy}{dx} = 5 \Rightarrow \frac{dy}{dx} = \frac{5}{2y}$	3 M1				
-			A1				
		When $x = 8$, $y^2 = 36 \Rightarrow y = \pm 6$ \Rightarrow gradients $= \frac{5}{12}$ and $-\frac{5}{12}$	A1 A1 A1 5				

			1		ر ۱
5		$x = x_0 e^{-3t} \Longrightarrow e^{3t} = \frac{x_0}{x}$			
		$\Rightarrow 3t = \ln\left(\frac{x_0}{x}\right) \Rightarrow t = \frac{1}{3}\ln\left(\frac{x_0}{x}\right)$	M1 A1		Take logs
		$\implies t = \ln\left(\frac{x_0}{x}\right)^{\frac{1}{3}}$			
		i.e. $a = x_0, \ b = \frac{1}{3}$	A1 A1	4	or any equivalent method
6	(i)	$\int (2x-3)^7 dx. \qquad \text{Let } u = 2x-3, \frac{du}{dx} = 2 \Longrightarrow dx = \frac{1}{2} dx$	M1 A1		
		$\int (2x-3)^7 dx. \qquad \text{Let } u = 2x-3, \ \frac{du}{dx} = 2 \Longrightarrow dx = \frac{1}{2} dx$ $= \int \frac{1}{2} u^7 du = \frac{u^8}{2 \times 8} = \frac{1}{16} (2x-3)^8 + c$	A1		or B3 cao
		2 2×3 10		3	
	(ii)	The substitution $u = x^2 + 1$ gives $\frac{du}{dx} = 2x$	M1		Using sub
		$\Rightarrow \int_1^2 x(x^2+1)^3 \mathrm{d}x = \int_2^5 \frac{1}{2} u^3 \mathrm{d}u$	A1		Correct int
		$=\left[\frac{u^4}{8}\right]_2^5$	A1		Correct limits
			A1		Int
		$=\frac{609}{8}(=76\frac{1}{8})$	A1	5	Ans
7	(i)	$f^2(x) = 4x$	B1	1	
	(ii)	fgh(x) = fg(x+2)	M1		correct order
		$= f(x+2)^2$	A1 A1		of functions
		$=2(x+2)^2$		3	
	(iii)	y = h(x)			
		= x + 2			
		$\Rightarrow x = y - 2$ $h^{-1}(x) = x - 2$	B1	1	
		$\Pi_{-}(\lambda) - \lambda - \lambda$		1	

Section B						
(i)	$0 = (x+2)e^{-x}$ $\Rightarrow x = -2$ so (-2,0) and (0,2)	B1 B1				
(ii)	$y = (x+2)e^{-x}$	M1	Product rule			
	$\Rightarrow \frac{1}{dx} = -e^{-x}(x+1) = 0 \Rightarrow x = -1$ SP is (-1, <i>e</i>)	A1 M1 A1	= 0			
(iii)	$\Rightarrow \frac{d^2 y}{dx^2} = xe^{-x}$ At (-1,e) this is negative, so SP is a maximum.	M1 A1 A1				
(iv)		B1				
(v)	At (0,2) gradient is -1 so gradient of normal is 1 Normal is $y = x + 2$. $y = x + 2$, $y = (x + 2)e^{-x}$ $\Rightarrow 0 = (x + 2)(1 - e^{-x})$ $\Rightarrow x = -2$ (or 0) Now intersection point is (2.0)	B1 M1 A1				
(vi)	Required area is $\int_{1}^{3} (x+2)e^{-x} dx$ $= \left[-e^{-x}(x+2)\right]_{1}^{3} + \int_{1}^{3} e^{-x} dx$ $= \left[-e^{-x}(x+2)\right]_{1}^{3} + \left[-e^{-x}\right]_{1}^{3}$ $= \frac{-6}{e^{3}} + \frac{4}{e}$	B1 M1 A1 A1 A1	or equivalent			
	(i) (ii) (iii) (iv) (v)	(i) $0 = (x+2)e^{-x}$ $\Rightarrow x = -2$ so (-2,0) and (0,2) (ii) $y = (x+2)e^{-x}$ $\Rightarrow \frac{dy}{dx} = -e^{-x}(x+1) = 0 \Rightarrow x = -1$ SP is (-1,e) (iii) $\Rightarrow \frac{d^2y}{dx^2} = xe^{-x}$ At (-1,e) this is negative, so SP is a maximum. (iv) $4 = \frac{4}{2}$ $4 = \frac{4}{2}$ 4 =	(i) $0 = (x+2)e^{-x}$ $\Rightarrow x = -2$ so $(-2,0)$ and $(0,2)$ (ii) $y = (x+2)e^{-x}$ $\Rightarrow \frac{dy}{dx} = -e^{-x}(x+1) = 0 \Rightarrow x = -1$ SP is $(-1,e)$ (iii) $\Rightarrow \frac{d^2y}{dx^2} = xe^{-x}$ At $(-1,e)$ this is negative, so SP is a maximum. (iv) 4^{4} 4			

9	(i) (A)		The transformation is a stretch with the <i>x</i> -axis invariant and of scale factor 2.	B1 B1	2	Same orientation y values doubled
	(i) (B)		The transformation is a reflection in the <i>y</i> -axis.	B1 B2	3	same shape Inversion
	(i) (C)		The transformation is a translation of 2 units parallel to the <i>x</i> -axis, ie $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$	B1 B2	3	Same shape Moved 2 to the right
	(ii)	There is a set of values of y (for example, $y = 1$) for which there are three corresponding values of x (so an inverse would be multivalued).		B1 B1	2	
	(iii)			B1	1	
	(iv)	$f(x) = x^{2}(x+2)$ $\Rightarrow f'(x) = 3x^{2} + 4x$ So the gradient at (1,3) is 7. The gradient on the inverse (which is a reflection of the original in $y = x$) is therefore $\frac{-1}{7}$.			4	
	(v)	The graph and its reflection must is reflection, ie y = x, so solve $y = x, y = x^2(x+2)$ $\Rightarrow x = x^2(x+2)$ $\Rightarrow 0 = x(x^2 + 2x - 1)$ $\Rightarrow x = 0, -1 \pm \sqrt{2}$ The positive non-zero root is as given		M1 M1 E1	3	