C2 Trigonometry

1

The diagram shows triangle $A B C$ in which $A B=16 \mathrm{~cm}, \angle A B C=118^{\circ}$ and $\angle A C B=26^{\circ}$.
Use the sine rule to find the length $A C$ to 3 significant figures.

2

The diagram shows triangle $P Q R$ in which $P Q=8.2 \mathrm{~cm}, P R=11.4 \mathrm{~cm}$ and $\angle P Q R=57^{\circ}$.
Use the sine rule to find the size of $\angle P R Q$ in degrees to 1 decimal place.

In triangle $A B C, A B=16.2 \mathrm{~cm}, B C=12.3 \mathrm{~cm}$ and $\angle B A C=37^{\circ}$.
Find the two possible sizes of $\angle A C B$ and the corresponding lengths of $A C$.
4

The diagram shows triangle $X Y Z$ in which $X Y=15.3 \mathrm{~cm}, Y Z=7.8 \mathrm{~cm}$ and $\angle X Y Z=31.5^{\circ}$.
Use the cosine rule to find the length $X Z$.

The diagram shows triangle $A B C$ in which $A B=18 \mathrm{~cm}, A C=13 \mathrm{~cm}$ and $B C=17 \mathrm{~cm}$.
Use the cosine rule to find the size of $\angle A C B$.

6 Find the length x in each triangle.
a

b

c

7 Find the angle θ in each triangle.
a

b

c

8 Find the area of each of the following triangles.
a

b

c

9 Joanne walks 4.2 miles on a bearing of 138°. She then walks 7.8 miles on a bearing of 251°.
a Calculate how far Joanne is from the point where she started.
b Find, as a bearing, the direction in which Joanne would have to walk in order to return to the point where she started.

10 A ferry and a cargo ship are both approaching the same port. The ferry is 3.2 km from the port on a bearing of 076° and the cargo ship is 6.9 km from the port on a bearing of 323°.
Find the distance between the two vessels and the bearing of the cargo ship from the ferry.

The diagram shows triangle $A B C$ in which $A B=10.4 \mathrm{~cm}, A C=11.0 \mathrm{~cm}$ and $B C=9.7 \mathrm{~cm}$. Find the area of the triangle to 3 significant figures.

12

The diagram shows triangle $X Y Z$ in which $X Y=22.5 \mathrm{~cm}$ and $\angle X Y Z=34^{\circ}$.
Given that the area of the triangle is $100 \mathrm{~cm}^{2}$, find the length $X Z$.

C2 TRIGONOMETRY

1 Convert each angle from degrees to radians, giving your answers in terms of π.
a 180°
b 30°
c 45°
d 720°
e 18°
f 120°
g 15°
h 40°
i 270°
j 7.5°
k 144°
l 220°

2 Convert each angle from degrees to radians, giving your answers to 2 decimal places.
a 10°
b 38°
c 291°
d 63.8°
e 507°
f 126.2°

3 Convert each angle from radians to degrees.
a 2π
b $\frac{\pi}{3}$
c $\frac{\pi}{2}$
d $\frac{3 \pi}{4}$
e $\frac{\pi}{18}$
k $\frac{7 \pi}{3}$
f $\frac{\pi}{30}$
g $\frac{5 \pi}{6}$
h $\frac{\pi}{8}$
i 3π
j $\quad \frac{2 \pi}{15}$
l $\frac{9 \pi}{20}$

4 Convert each angle from radians to degrees, giving your answers to 1 decimal place.
a $2^{\text {c }}$
b $0.5^{\text {c }}$
c 3.1^{c}
d $1.43^{\text {c }}$
e $8.7^{\text {c }}$
f $0.742^{\text {c }}$

5 Find, in terms of π, the length of the arc in each of the following circular sectors.
a

b

c

6 Find, to 3 significant figures, the perimeter of each of the following circular sectors.
a

b

c

7 Find, in radians to 2 decimal places, the angle θ in each of the following circular sectors.
a

b

C

8 The minor $\operatorname{arc} A B$ of a circle, centre O, has length 46.2 cm .
Given that $\angle A O B=78.5^{\circ}$, find
a the distance $O A$,
b the perimeter of sector $O A B$.

9 Find, in cm^{2} to 1 decimal place, the area of each of the following circular sectors.
a

b

c

$10 \quad P Q$ is an arc of a circle of radius 8 cm , centre O.
Given that arc $P Q$ has length 12 cm , find
a the angle, in radians, subtended by $P Q$ at O,
b the area of sector $O P Q$.

The diagram shows a circle of radius 11.6 cm , centre O. The arc of the circle $A B$ subtends an angle of 1.4 radians at O. Find, to 3 significant figures,
a the perimeter of the minor sector $O A B$,
b the perimeter of the major sector $O A B$,
c the area of the minor sector $O A B$,
d the area of the major sector $O A B$.

12

The diagram shows a circular sector $O A B$. Find the area of
a the sector $O A B$,
b the triangle $O A B$,
c the shaded segment.

13 Find the area of the shaded segment in each of the following circular sectors.
a

b

c

C2 TRIGONOMETRY

1

The diagram shows a sector of a circle of radius 12.6 cm .
Given that the perimeter of the sector is 31.7 cm , find its area.
2

The diagram shows a sector $O A B$ of a circle, centre O and radius 7.3 cm .
Given that the area of the sector is $38.4 \mathrm{~cm}^{2}$, find
a the size of $\angle A O B$ in radians,
b the perimeter of the shaded segment.

The diagram shows a sector of a circle of radius $r \mathrm{~cm}$. The area of the sector is $40 \mathrm{~cm}^{2}$.
a Show that the perimeter of the sector is $\left(2 r+\frac{80}{r}\right) \mathrm{cm}$.
b Hence find the set of values of r for which the perimeter of the sector is less than 26 cm .
4

The diagram shows three circles with centres A, B and C, and radii $4 \mathrm{~cm}, 6 \mathrm{~cm}$ and 2 cm respectively. Each circle touches the other two circles.
a Prove that triangle $A B C$ is a right-angled triangle.
b Find $\angle A B C$ in radians to 2 decimal places.
c Show that the area of the shaded region enclosed by the three circles is $1.86 \mathrm{~cm}^{2}$ to 3 significant figures.

5

The diagram shows a company logo which consists of a circle of diameter 10 cm drawn on top of a rectangle measuring 6 cm by 14 cm . The centres of the circle and rectangle are coincident and the two shapes intersect at A, B, C and D.
a Find the length of the chord of the circle $A B$.
b Show that the perimeter of the logo is 42.5 cm to 3 significant figures.
c Find the area of the logo.

6

$A B, C D$ and $E F$ are arcs of concentric circles, centre O, such that $O A C E$ and $O B D F$ are straight lines as shown in the diagram. The area of the shaded region CEFD is denoted by A_{1} and the area of the shaded sector $O A B$ by A_{2}.
Given that $O A=r \mathrm{~cm}, A C=2 \mathrm{~cm}, O E=8 \mathrm{~cm}$ and $\angle A O B=\theta$ radians,
a find an expression for A_{1} in terms of r and θ.
Given also that $A_{1}=7 A_{2}$,
b show that $r=2.5$
7

Shape A

Shape B

A girl is playing with a paper clip. She straightens the wire and then bends it to form an equilateral triangle, Shape A above. She then curves one side of the triangle to form a sector of a circle, Shape B above.
Find, to 1 decimal place, the percentage change in the area enclosed by the paper clip when it is changed from Shape A to Shape B, indicating whether this is an increase or decrease.

C2 TRIGONOMETRY

Worksheet D

1 Find to 3 decimal places the value of
a $\sin 131^{\circ}$
b $\tan 340.5^{\circ}$
c $\cos 418^{\circ}$
d $\sin \left(-165.2^{\circ}\right)$

2 Give the exact value of
a $\cos 60^{\circ}$
b $\sin 45^{\circ}$
c $\tan 45^{\circ}$
d $\cos 30^{\circ}$
e $\sin 90^{\circ}$
f $\tan 30^{\circ}$
g $\cos 120^{\circ}$
h $\sin 135^{\circ}$
i $\tan 210^{\circ}$
j $\cos 225^{\circ}$
k $\sin 300^{\circ}$
$1 \tan 120^{\circ}$
m $\cos 330^{\circ}$
n $\tan 150^{\circ}$
o $\cos \left(-60^{\circ}\right)$
p $\sin 405^{\circ}$
q $\tan \left(-45^{\circ}\right)$
r $\sin \left(-240^{\circ}\right)$
s $\tan 570^{\circ}$
t $\cos \left(-150^{\circ}\right)$

3 Find to 3 decimal places the value of
a $\cos 0.42^{\text {c }}$
b $\sin 4.16^{\circ}$
c $\tan \left(-3.1^{c}\right)$
d $\cos 11.25^{\text {c }}$

4 Give the exact value of
a $\sin \frac{\pi}{6}$
b $\cos \frac{\pi}{2}$
c $\sin \frac{\pi}{4}$
d $\tan \frac{\pi}{3}$
e $\cos \frac{\pi}{3}$
f $\sin \frac{2 \pi}{3}$
g $\tan \frac{3 \pi}{4}$
h $\cos \frac{5 \pi}{6}$
i $\tan \frac{5 \pi}{3}$
j $\cos \frac{5 \pi}{4}$
k $\sin \left(-\frac{\pi}{6}\right)$
l $\tan \left(-\frac{5 \pi}{6}\right)$
m $\sin 3 \pi$
n $\tan \left(-\frac{5 \pi}{4}\right)$
o $\cos \frac{8 \pi}{3}$
p $\sin \left(-\frac{7 \pi}{3}\right)$

5

The graph shows the curve $y=\sin x^{\circ}$ in the interval $0 \leq x \leq 720$.
a Write down the coordinates of any points where the curve intersects the coordinate axes.
b Write down the coordinates of the turning points of the curve.
6

The graph shows the curve $y=\tan x^{\circ}$ in the interval $0 \leq x \leq 720$.
a Write down the coordinates of any points where the curve intersects the coordinate axes.
b Write down the equations of the asymptotes.

7 Describe the transformation that maps the graph of $y=\sin x^{\circ}$ onto the graph of
a $y=3 \sin x^{\circ}$
b $y=\sin 4 x^{\circ}$
c $y=\sin (x+60)^{\circ}$
d $y=\sin \left(-x^{\circ}\right)$

8 Sketch each of the following pairs of curves on the same set of axes in the interval $0 \leq x \leq 360^{\circ}$.

a $y=\cos x$	and	$y=3 \cos x$	b $y=\sin x$	and	$y=\sin \left(x-30^{\circ}\right)$
c $y=\cos x$	and	$y=\cos 2 x$	d $y=\tan x$	and	$y=2+\tan x$
e $y=\sin x$	and	$y=-\sin x$	f $y=\cos x$	and	$y=\cos \left(x+60^{\circ}\right)$
g $y=\tan x$	and	$y=\tan \frac{1}{2} x$	h $y=\sin x$	and	$y=1+\sin x$

9 Each curve is shown for the interval $-180^{\circ} \leq x \leq 180^{\circ}$.
Write down the coordinates of the turning points of each curve in this interval.
a

b

c

d

10 Write down the period of each of the following graphs.
a $y=\sin x^{\circ}$
b $y=\tan x^{\circ}$
c $y=2 \cos x^{\circ}$
d $y=\sin 2 x^{\circ}$
e $y=\tan (x+30)^{\circ}$
f $y=\cos \frac{1}{3} x^{\circ}$

11 Sketch each of the following curves for x in the interval $0 \leq x \leq 360$. Show the coordinates of any points of intersection with the coordinate axes and the equations of any asymptotes.
a $y=\tan x^{\circ}$
b $y=\cos (x+30)^{\circ}$
c $y=\sin 2 x^{\circ}$
d $y=1+\cos x^{\circ}$
e $y=\sin \frac{1}{2} x^{\circ}$
f $y=\tan (x+90)^{\circ}$
g $y=\sin (x-45)^{\circ}$
h $y=-\tan x^{\circ}$
i $y=\cos (x-120)^{\circ}$

12 Sketch each of the following curves for x in the interval $0 \leq x \leq 2 \pi$. Show the coordinates of any turning points and the equations of any asymptotes.
a $y=\cos x$
b $y=3 \sin x$
c $y=\tan 2 x$
d $y=\sin \left(x-\frac{\pi}{3}\right)$
e $y=\cos \frac{1}{3} x$
f $y=\sin x-2$
g $y=\tan \left(x+\frac{\pi}{4}\right)$
h $y=\sin \frac{3}{4} x$
i $y=\cos \left(x-\frac{\pi}{6}\right)$

C2 TRIGONOMETRY

1 Find all values of x in the interval $0 \leq x \leq 360^{\circ}$ such that
a $\sin x=\frac{1}{2}$
b $\tan x=\sqrt{3}$
c $\cos x=0$
d $\sin x=-1$
e $\cos x=\frac{\sqrt{3}}{2}$
f $\sin x=\frac{1}{\sqrt{2}}$
g $\tan x=-1$
h $\cos x=-\frac{1}{2}$
i $\sin x=-\frac{\sqrt{3}}{2}$
j $\tan x=\frac{1}{\sqrt{3}}$
k $\cos x=-\frac{1}{\sqrt{2}}$
l $\tan x=-\sqrt{3}$

2 Solve each equation for θ in the interval $0 \leq \theta \leq 360^{\circ}$ giving your answers to 1 decimal place.
a $\cos \theta=0.4$
b $\sin \theta=0.27$
c $\tan \theta=1.6$
d $\sin \theta=0.813$
e $\tan \theta=0.1$
f $\cos \theta=0.185$
$\mathrm{g} \sin \theta=-0.6$
h $\tan \theta=-0.7$
i $\cos \theta=-0.39$
j $\tan \theta=-3.4$
k $\cos \theta=-0.636$
l $\sin \theta=-0.203$

3 Solve each equation for x in the interval $0 \leq x \leq 360$.
Give your answers to 1 decimal place where appropriate.
a $\sin (x-60)^{\circ}=0.5$
b $\tan (x+30)^{\circ}=1$
c $\cos (x-45)^{\circ}=0.2$
d $\tan (x+30)^{\circ}=0.78$
e $\cos (x+45)^{\circ}=-0.5$
f $\sin (x-60)^{\circ}=-0.89$
g $\cos (x+45)^{\circ}=0.9$
h $\sin (x+30)^{\circ}=0.14$
i $\cos (x-60)^{\circ}=0.6$
j $\sin (x-30)^{\circ}=-0.3$
k $\tan (x-60)^{\circ}=-1.26$
l $\sin 2 x^{\circ}=0.5$
m $\cos 2 x^{\circ}=0.64$
n $\sin 2 x^{\circ}=-0.18$
o $\tan 2 x^{\circ}=-2.74$
p $\sin \frac{1}{2} x^{\circ}=0.703$
q $\tan 3 x^{\circ}=0.591$
r $\cos 2 x^{\circ}=-0.415$

4 Solve each equation for x in the interval $0 \leq x \leq 2 \pi$ giving your answers in terms of π.
a $\sin x=0$
b $\cos x=\frac{1}{2}$
c $\tan x=1$
d $\cos x=-1$
e $\tan x=-\frac{1}{\sqrt{3}}$
f $\sin x=-\frac{1}{\sqrt{2}}$
g $\tan \left(x+\frac{\pi}{6}\right)=\sqrt{3}$
h $\sin \left(x-\frac{\pi}{4}\right)=\frac{1}{2}$
i $\cos \left(x+\frac{\pi}{3}\right)=-\frac{\sqrt{3}}{2}$
j $\quad \sin \left(x+\frac{\pi}{3}\right)=\frac{1}{\sqrt{2}}$
k $\cos 2 x=-\frac{1}{\sqrt{2}}$
l $\tan 3 x=\frac{1}{\sqrt{3}}$

5 Solve each equation for θ in the interval $-180^{\circ} \leq \theta \leq 180^{\circ}$.
Give your answers to 1 decimal place where appropriate.
a $\cos \theta=0$
b $\tan 2 \theta+1=0$
c $\sin \left(\theta+60^{\circ}\right)=0.291$
d $2 \tan \left(\theta-15^{\circ}\right)=3.7$
e $\sin 2 \theta-0.3=0$
f $4 \cos 3 \theta=2$
g $1+\sin \left(\theta+110^{\circ}\right)=0$
h $5 \cos \left(\theta-27^{\circ}\right)=3$
i $7-3 \tan \theta=0$
j $3+8 \cos 2 \theta=0$
k $2+6 \tan \left(\theta+92^{\circ}\right)=0$
l $1-4 \sin \frac{1}{3} \theta=0$

6 Solve each equation for x in the interval $0 \leq x \leq 180^{\circ}$.
Give your answers to 1 decimal place where appropriate.
a $\tan \left(2 x+30^{\circ}\right)=1$
b $\sin \left(2 x-15^{\circ}\right)=0$
c $\cos \left(2 x+70^{\circ}\right)=0.5$
d $\sin \left(2 x+210^{\circ}\right)=0.26$
e $\cos \left(2 x-38^{\circ}\right)=-0.64$
f $\tan \left(2 x-56^{\circ}\right)=-0.32$
g $\cos \left(3 x-24^{\circ}\right)=0.733$
h $\tan \left(3 x+60^{\circ}\right)=-1.9$
i $\sin \left(\frac{1}{2} x+18^{\circ}\right)=0.572$

7 Solve each equation for x in the interval $0 \leq x \leq 2 \pi$, giving your answers to 2 decimal places.
a $\tan x=0.52$
b $\cos 2 x=0.315$
c $\sin \left(x+\frac{\pi}{4}\right)=0.7$
d $3 \cos x+1=0$
e $\sin \frac{1}{2} x=0.09$
f $\tan 2 x=-0.225$
g $3-4 \sin \left(x-\frac{\pi}{3}\right)=0$
h $\tan \left(2 x+\frac{\pi}{6}\right)=2$
i $\cos 3 x=-0.81$
j $5+3 \tan x=0$
k $\cos \left(2 x-\frac{\pi}{2}\right)=-0.34$
l $1+6 \sin 2 x=0$

8 a Solve the equation

$$
2 y^{2}-3 y+1=0 .
$$

b Hence, find the values of x in the interval $0 \leq x \leq 360^{\circ}$ for which

$$
2 \sin ^{2} x-3 \sin x+1=0
$$

9 Solve each equation for θ in the interval $0 \leq \theta \leq 360$.
Give your answers to 1 decimal place where appropriate.
a $\sin ^{2} \theta^{\circ}=0.75$
b $\quad 1-\tan ^{2} \theta^{\circ}=0$
c $2 \cos ^{2} \theta^{\circ}+\cos \theta^{\circ}=0$
d $\sin \theta^{\circ}\left(4 \cos \theta^{\circ}-1\right)=0$
e $4 \sin \theta^{\circ}=\sin \theta^{\circ} \tan \theta^{\circ}$
f $\left(2 \cos \theta^{\circ}-1\right)\left(\cos \theta^{\circ}+1\right)=0$
g $\tan ^{2} \theta^{\circ}-3 \tan \theta^{\circ}+2=0$
h $3 \sin ^{2} \theta^{\circ}-7 \sin \theta^{\circ}+2=0$
i $\tan ^{2} \theta^{\circ}-\tan \theta^{\circ}=6$
j $6 \cos ^{2} \theta^{\circ}-\cos \theta^{\circ}-2=0$
k $4 \sin ^{2} \theta^{\circ}+3=8 \sin \theta^{\circ}$
l $\cos ^{2} \theta^{\circ}+2 \cos \theta^{\circ}-1=0$
$\mathbf{m} \tan ^{2} \theta^{\circ}+3 \tan \theta^{\circ}-1=0$
n $3 \sin ^{2} \theta^{\circ}+\sin \theta^{\circ}=1$

10 a Sketch the curve $y=\cos x^{\circ}$ for x in the interval $0 \leq x \leq 360$.
b Sketch on the same diagram the curve $y=\cos (x+90)^{\circ}$ for x in the interval $0 \leq x \leq 360$.
c Using your diagram, find all values of x in the interval $0 \leq x \leq 360$ for which

$$
\cos x^{\circ}=\cos (x+90)^{\circ} .
$$

11 a Sketch the curves $y=\cos x^{\circ}$ and $y=\cos 3 x^{\circ}$ on the same set of axes for x in the interval $0 \leq x \leq 360$.
b Solve, for x in the interval $0 \leq x \leq 360$, the equation

$$
\cos x^{\circ}=\cos 3 x^{\circ}
$$

c Hence solve, for x in the interval $0 \leq x \leq 180$, the equation

$$
\cos 2 x^{\circ}=\cos 6 x^{\circ}
$$

C2 TRIGONOMETRY

1 a Given that $4 \sin x+\cos x=0$, show that $\tan x=-\frac{1}{4}$.
b Hence, find the values of x in the interval $0 \leq x \leq 360^{\circ}$ for which

$$
4 \sin x+\cos x=0
$$

giving your answers to 1 decimal place.
2 a Show that

$$
5 \sin ^{2} x+5 \sin x+4 \cos ^{2} x \equiv \sin ^{2} x+5 \sin x+4
$$

b Hence, find the values of x in the interval $0 \leq x \leq 360^{\circ}$ for which

$$
5 \sin ^{2} x+5 \sin x+4 \cos ^{2} x=0
$$

3 Solve each equation for x in the interval $0 \leq x \leq 360^{\circ}$.
Give your answers to 1 decimal place where appropriate.
a $2 \sin x-\cos x=0$
b $3 \sin x=4 \cos x$
c $\cos ^{2} x+3 \sin x-3=0$
d $3 \cos ^{2} x-\sin ^{2} x=2$
e $2 \sin ^{2} x+3 \cos x=3$
f $3 \cos ^{2} x=5(1-\sin x)$
g $3 \sin x \tan x=8$
h $\cos x=3 \tan x$
i $3 \sin ^{2} x-5 \cos x+2 \cos ^{2} x=0$
j $2 \sin ^{2} x+7 \sin x-2 \cos ^{2} x=0$
k $3 \sin x-2 \tan x=0$
l $\sin ^{2} x-9 \cos x-\cos ^{2} x=5$

4 Solve each equation for θ in the interval $-\pi \leq \theta \leq \pi$ giving your answers in terms of π.
a $4 \cos ^{2} \theta=1$
b $4 \sin ^{2} \theta+4 \sin \theta+1=0$
c $\cos ^{2} \theta+2 \cos \theta-3=0$
d $3 \sin ^{2} \theta-\cos ^{2} \theta=0$
e $4 \sin ^{2} \theta-5 \sin \theta+2 \cos ^{2} \theta=0$
f $\sin ^{2} \theta-3 \cos \theta-\cos ^{2} \theta=2$

5 Prove that
a $(\sin x+\cos x)^{2} \equiv 1+2 \sin x \cos x$
b $\frac{1}{\cos x}-\cos x \equiv \sin x \tan x, \quad \cos x \neq 0$
c $\frac{\cos ^{2} x}{1-\sin x} \equiv 1+\sin x, \quad \sin x \neq 1$
d $\frac{1+\sin x}{\cos x} \equiv \frac{\cos x}{1-\sin x}, \quad \cos x \neq 0$

6 a Prove the identity

$$
(\cos x-\tan x)^{2}+(\sin x+1)^{2} \equiv 2+\tan ^{2} x
$$

b Hence find, in terms of π, the values of x in the interval $0 \leq x \leq 2 \pi$ such that

$$
(\cos x-\tan x)^{2}+(\sin x+1)^{2}=3
$$

7

$$
\mathrm{f}(x) \equiv \cos ^{2} x+2 \sin x, \quad 0 \leq x \leq 2 \pi
$$

a Prove that $\mathrm{f}(x)$ can be expressed in the form

$$
\mathrm{f}(x)=2-(\sin x-1)^{2}
$$

b Hence deduce the maximum value of $\mathrm{f}(x)$ and the value of x for which this occurs.

C2 Trigonometry

1 Find, in terms of π, the values of x in the interval $0 \leq x \leq 2 \pi$ for which
a $3 \tan x-\sqrt{3}=0$,
b $2 \cos \left(x+\frac{\pi}{3}\right)+\sqrt{3}=0$.

2 Given that $\cos A=\sqrt{3}-1$,
a find the value of $\sin ^{2} A$ in the form $p \sqrt{3}+q$ where p and q are integers,
b show that $\tan ^{2} A=\frac{\sqrt{3}}{2}$.

3

The diagram shows sector $O A B$ of a circle, centre O, radius 8 cm , in which $\angle A O B=45^{\circ}$.
a Find the perimeter of the sector in centimetres to 1 decimal place.
b Show that the area of the shaded segment is $8(\pi-2 \sqrt{2}) \mathrm{cm}^{2}$.
4 Find, to 1 decimal place, the values of θ in the interval $0 \leq \theta \leq 360^{\circ}$ for which

$$
2 \sin ^{2} \theta+\sin \theta-\cos ^{2} \theta=2
$$

5 Solve, for x in the interval $-\pi \leq x \leq \pi$, the equation

$$
3 \sin ^{2} x=4(1-\sin x)
$$

giving your answers to 2 decimal places.

6

The diagram shows the curves $y=2 \sin x$ and $y=3 \cos x$ for x in the interval $0 \leq x \leq 2 \pi$.
Find, to 2 decimal places, the coordinates of the points where the curves intersect in this interval.

7 a Sketch the curve $y=\cos 2 x^{\circ}$ for x in the interval $0 \leq x \leq 360$.
b Find the values of x in the interval $0 \leq x \leq 360$ for which

$$
\cos 2 x^{\circ}=-\frac{1}{2} .
$$

8 Solve, for θ in the interval $0 \leq \theta \leq 360$, the equation

$$
12 \cos \theta^{\circ}=7 \tan \theta^{\circ}
$$

giving your answers to 1 decimal place.
$9 \quad$ Given that $\quad \tan 15^{\circ}=\frac{\tan 60^{\circ}-\tan 45^{\circ}}{1+\left(\tan 60^{\circ} \times \tan 45^{\circ}\right)}$,
a show that $\tan 15^{\circ}=2-\sqrt{3}$,
b find the exact value of $\tan 345^{\circ}$.
10 Find, to an appropriate degree of accuracy, the values of x in the interval $0 \leq x \leq 360^{\circ}$ for which

$$
\sin ^{2} x+5 \cos x-3 \cos ^{2} x=2
$$

11

The diagram shows triangle $A B C$ in which $A C=18 \mathrm{~cm}, \angle B A C=41^{\circ}$ and $\angle A C B=26^{\circ}$.
Find to 3 significant figures
a the length $B C$,
b the area of triangle $A B C$.
12 Solve, for θ in the interval $0 \leq \theta \leq 360^{\circ}$, the equation

$$
(6 \cos \theta-1)(\cos \theta+1)=3
$$

13 Find, in degrees to 1 decimal place, the values of x in the interval $-180^{\circ} \leq x \leq 180^{\circ}$ for which

$$
\sin ^{2} x+5 \sin x=2 \cos ^{2} x
$$

14 Prove that
a $\sin ^{4} \theta-2 \sin ^{2} \theta \equiv \cos ^{4} \theta-1$,
b $\frac{\sin \theta}{1+\cos \theta}+\frac{1+\cos \theta}{\sin \theta} \equiv \frac{2}{\sin \theta}$, for $\sin \theta \neq 0$.
15

The gears in a toy are shown in the diagram above.
A thin rubber band passes around two circular discs. The centres of the discs are at P and Q where $P Q=8 \mathrm{~cm}$ and their radii are 2 cm and 5 cm respectively. The sections of the rubber band not in contact with the discs, $R S$ and $T U$, are assumed to be taught.
a Show that $\angle P Q R=1.186$ radians to 3 decimal places.
b Find the length $R S$.
c Find the length of the rubber band in this situation.

C2 TRIGONOMETRY

1 Find, in radians to 2 decimal places, the values of θ in the interval $0 \leq \theta \leq 2 \pi$ for which
a $\sin \left(\theta+\frac{\pi}{4}\right)=0.4$,
b $1-3 \cos 2 \theta=0$.
2 a Sketch the curve $y=\sin 3 x$ for x in the interval $0 \leq x \leq 180^{\circ}$, showing the coordinates of the turning points of the curve.
b Solve, for θ in the interval $0 \leq \theta \leq 360^{\circ}$, the equation

$$
\begin{equation*}
\tan ^{2} \theta-2 \tan \theta-3=0 \tag{6}
\end{equation*}
$$

3

The diagram shows the major sector $O A B$ of a circle, centre O, radius 6.4 cm .
The reflex angle subtended by the major arc $A B$ at O is 260°.
a Express 260° in radians, correct to 3 decimal places.
b Find the perimeter of the major sector $O A B$.
c Find the area of the major sector $O A B$.
4 Solve, for θ in the interval $0 \leq \theta \leq 360^{\circ}$, the equation

$$
3 \cos ^{2} \theta+6 \cos \theta=2 \sin ^{2} \theta+6
$$

giving your answers to 1 decimal place.

5

The diagram shows triangle $A B C$ in which $A C=4 \mathrm{~cm}, B C=5 \mathrm{~cm}$ and $\angle A C B=60^{\circ}$.
a Find the exact area of triangle $A B C$.
b Show that $A B=\sqrt{21} \mathrm{~cm}$.
c Find the value of $\sin (\angle A B C)$ in the form $k \sqrt{7}$ where k is an exact fraction.

6 Find, to 1 decimal place, the values of x in the interval $0 \leq x \leq 360$ for which

$$
\begin{equation*}
\tan (2 x+15)^{\circ}=2 \tag{6}
\end{equation*}
$$

7 Find the values of θ in the interval $0 \leq \theta \leq 360^{\circ}$ for which

$$
\begin{equation*}
\sin \theta \tan \theta-\cos \theta=1 \tag{8}
\end{equation*}
$$

8 The line with equation $y=6$ intersects the circle with equation $x^{2}+y^{2}-10 x-2 y-3=0$ at the points P and Q.
a Find the coordinates of the centre and the radius of the circle.
b Find the coordinates of the points P and Q.
c Find the area of the minor segment enclosed by the chord $P Q$ and the circle.
9 Find the values of θ in the interval $0 \leq \theta \leq 360^{\circ}$ for which

$$
\begin{equation*}
5 \sin ^{2} \theta+5 \sin \theta+2 \cos ^{2} \theta=0 \tag{8}
\end{equation*}
$$

10

The diagram shows the curve $y=\tan \left(x+22^{\circ}\right)$ for x in the interval $0 \leq x \leq 360^{\circ}$.
a Write down the coordinates of the points P and Q where the curve crosses the x-axis.
b Find the coordinates of the point R where the curve meets the y-axis.
c Write down the equations of the curve's asymptotes.
11 a Find, to 1 decimal place, the values of x in the interval $0 \leq x \leq 360^{\circ}$, for which

$$
\begin{equation*}
5 \sin x=2 \cos x \tag{4}
\end{equation*}
$$

b Solve, for y in the interval $0 \leq y \leq 2 \pi$, the equation

$$
\begin{equation*}
2 \sin ^{2} y-\sin y=1 \tag{6}
\end{equation*}
$$

giving your answers in terms of π.
12 Solve, for θ in the interval $-180^{\circ} \leq \theta \leq 180^{\circ}$, the equation

$$
\begin{equation*}
3 \cos ^{2} \theta-5 \cos \theta+2 \sin ^{2} \theta=0 \tag{7}
\end{equation*}
$$

giving your answers to 1 decimal place.
13

The diagram shows the circular sector $O A B$, centre O. The point C lies on $O B$ such that $A C$ is perpendicular to $O B$.
Given that $O A=a$, and that $\angle A O B=60^{\circ}$,
a find the area of sector $O A B$ in terms of a and π,
b find the length $O C$ in terms of a,
c show that the area of the shaded region bounded by the arc $A B$ and the straight lines
$A C$ and $B C$ is given by $\frac{1}{24} a^{2}(4 \pi-3 \sqrt{3})$.

C2 Trigonometry

1 Find, to 1 decimal place, the values of x in the interval $-180^{\circ} \leq x \leq 180^{\circ}$ for which
a $\cos \left(x+40^{\circ}\right)=0.3$,
b $2+\tan 2 x=0$.
2 Find, to 1 decimal place, the values of x in the interval $0 \leq x \leq 360$ for which

$$
\begin{equation*}
2 \tan ^{2} x^{\circ}-4 \tan x^{\circ}+1=0 \tag{6}
\end{equation*}
$$

3

The diagram shows sector $O A B$ of a circle, centre O, radius 15 cm .
Given that $\angle A O B=\theta$ radians and that the length of the arc $A B$ is 32.1 cm ,
a find the value of θ,
b find the area of sector $O A B$.
4 Solve, for x in the interval $0 \leq x \leq \pi$, the equation

$$
\sin \left(2 x-\frac{\pi}{3}\right)=\frac{1}{2},
$$

giving your answers in terms of π.
5 a Given that $\sin A=1-\sqrt{2}$, show that $\cos ^{2} A+2 \sin A=0$.
b Sketch the curve $y=\sin \left(x+\frac{\pi}{3}\right)$ for x in the interval $0 \leq x \leq 2 \pi$.
Label on your sketch
i the value of x at each point where the curve intersects the x-axis,
ii the coordinates of the maximum and minimum points of the curve.
6 Find the values of x in the interval $0 \leq x \leq 360^{\circ}$ for which

$$
\begin{equation*}
2 \sin ^{2} x+\sin x+1=\cos ^{2} x . \tag{8}
\end{equation*}
$$

7

The diagram shows triangle $P Q R$ in which $P Q=10 \mathrm{~cm}, Q R=14 \mathrm{~cm}$ and $\angle Q P R=0.7$ radians.
a Find the size of $\angle P R Q$ in radians to 2 decimal places.
The point S lies on $P R$ such that $P S=10 \mathrm{~cm}$. The shaded region is bounded by the straight lines $Q R$ and $R S$ and the arc $Q S$ of a circle, centre P.
b Find the area of the shaded region.

8 a Given that $0<A<90^{\circ}$, and that $\sin A=\frac{\sqrt{5}}{3}$,
i show that $\cos A=\frac{2}{3}$,
ii find the exact value of $\tan A$.
b Find the values of x in the interval $0 \leq x \leq 360^{\circ}$ for which

$$
\begin{equation*}
5 \sin x \cos x+\cos x=0 \tag{6}
\end{equation*}
$$

9 Find the values of θ in the interval $0 \leq \theta \leq 180$ for which

$$
\begin{equation*}
\cos (2 \theta+30)^{\circ}=-\frac{1}{2} \tag{6}
\end{equation*}
$$

10 a Sketch the curve $y=\cos (x-30)^{\circ}$ for x in the interval $-180 \leq x \leq 180$, showing the coordinates of any maximum or minimum points on the curve.
b Find the x-coordinates of the points where the curve intersects the line $y=0.2$ in this interval, giving your answers to 1 decimal place.

11 Find the values of x in the interval $0 \leq x \leq 360^{\circ}$ for which

$$
\begin{equation*}
4 \cos ^{2} x-\cos x-2 \sin ^{2} x=0 \tag{8}
\end{equation*}
$$

12

The diagram shows a circle of radius $r \mathrm{~cm}$. The chord $P Q$ divides the circle into the unshaded minor segment of area A_{1} and the shaded major segment of area A_{2}.

Given that $P Q$ subtends an angle of θ radians at the centre of the circle,
a find an expression for A_{1} in terms of r and θ.
Given also that $\theta=\frac{5 \pi}{6}$,
b show that $A_{1}: A_{2}=(5 \pi-3):(7 \pi+3)$.
13 Find, in terms of π, the values of x in the interval $0 \leq x \leq 2 \pi$ for which

$$
\begin{equation*}
3 \tan x-2 \cos x=0 \tag{7}
\end{equation*}
$$

14 In triangle $A B C, A B=5 \mathrm{~cm}, A C=7 \mathrm{~cm}$ and $B C=8 \mathrm{~cm}$.
a Find the value of $\cos (\angle A B C)$.
b Show that the area of triangle $A B C$ is $10 \sqrt{3} \mathrm{~cm}^{2}$.
15 a Show that

$$
\begin{equation*}
\left(2+\cos ^{2} \theta\right)\left(1+\tan ^{2} \theta\right) \equiv 3+2 \tan ^{2} \theta \tag{3}
\end{equation*}
$$

b Hence find the values of θ in the interval $0 \leq \theta \leq 360^{\circ}$ for which

$$
\begin{equation*}
\left(2+\cos ^{2} \theta\right)\left(1+\tan ^{2} \theta\right)=7 \tag{5}
\end{equation*}
$$

