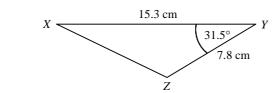


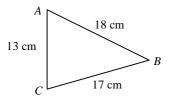
B 16 cm A

The diagram shows triangle *ABC* in which AB = 16 cm, $\angle ABC = 118^{\circ}$ and $\angle ACB = 26^{\circ}$. Use the sine rule to find the length *AC* to 3 significant figures.

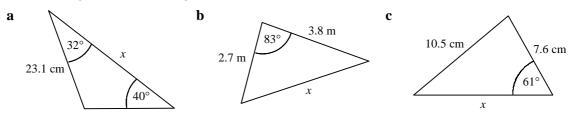

2

1

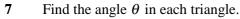
The diagram shows triangle *PQR* in which *PQ* = 8.2 cm, *PR* = 11.4 cm and $\angle PQR = 57^{\circ}$. Use the sine rule to find the size of $\angle PRQ$ in degrees to 1 decimal place.

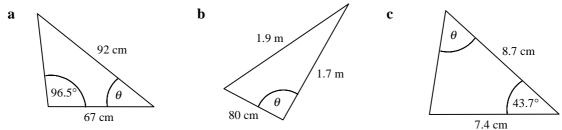

3 In triangle *ABC*, AB = 16.2 cm, BC = 12.3 cm and $\angle BAC = 37^{\circ}$. Find the two possible sizes of $\angle ACB$ and the corresponding lengths of *AC*.

The diagram shows triangle XYZ in which XY = 15.3 cm, YZ = 7.8 cm and $\angle XYZ = 31.5^{\circ}$. Use the cosine rule to find the length XZ.

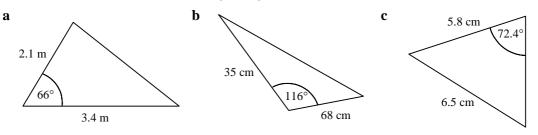

5

4

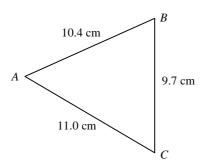



The diagram shows triangle ABC in which AB = 18 cm, AC = 13 cm and BC = 17 cm. Use the cosine rule to find the size of $\angle ACB$.

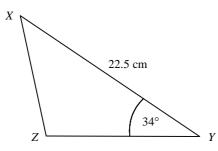
6 Find the length *x* in each triangle.



© Solomon Press

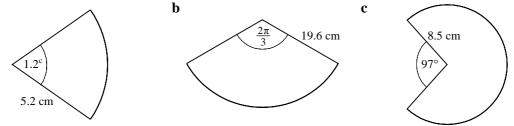


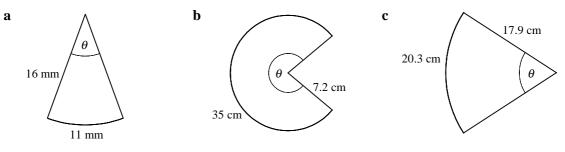
8 Find the area of each of the following triangles.


- **9** Joanne walks 4.2 miles on a bearing of 138°. She then walks 7.8 miles on a bearing of 251°.
 - **a** Calculate how far Joanne is from the point where she started.
 - **b** Find, as a bearing, the direction in which Joanne would have to walk in order to return to the point where she started.
- A ferry and a cargo ship are both approaching the same port. The ferry is 3.2 km from the port on a bearing of 076° and the cargo ship is 6.9 km from the port on a bearing of 323°.
 Find the distance between the two vessels and the bearing of the cargo ship from the ferry.

11

The diagram shows triangle *ABC* in which AB = 10.4 cm, AC = 11.0 cm and BC = 9.7 cm. Find the area of the triangle to 3 significant figures.




The diagram shows triangle *XYZ* in which XY = 22.5 cm and $\angle XYZ = 34^{\circ}$. Given that the area of the triangle is 100 cm², find the length *XZ*.

Worksheet B

	NOMETRY	1		Work	sheet B
Convert each a	angle from degre	ees to radians, gi	ving your answe	ers in terms of π .	
a 180°	b 30°	c 45°	d 720°	e 18°	f 120°
g 15°	h 40°	i 270°	j 7.5°	k 144°	l 220°
Convert each a	angle from degre	es to radians, gi	ving your answe	ers to 2 decimal pl	aces.
a 10°	b 38°	c 291°	d 63.8°	e 507°	f 126.2°
Convert each a	angle from radia	ns to degrees.			
a 2π	b $\frac{\pi}{3}$	$\mathbf{c} \frac{\pi}{2}$	d $\frac{3\pi}{4}$	$e \frac{\pi}{18}$	$\mathbf{f} = \frac{\pi}{30}$
$\mathbf{g} = \frac{5\pi}{6}$	$h \frac{\pi}{8}$	i 3π	$\mathbf{j} \frac{2\pi}{15}$	$\mathbf{k} = \frac{7\pi}{3}$	$\mathbf{l} \frac{9\pi}{20}$
Convert each a	angle from radia	ns to degrees, gi	ving your answe	ers to 1 decimal pl	ace.
$\mathbf{a} 2^{c}$	b 0.5 ^c	c 3.1 ^c	d 1.43 ^c	e 8.7 ^c	f 0.742 ^c
Find, in terms	of π , the length	of the arc in eacl	n of the followin	ng circular sectors	
a b c 5π 5π 9 mm					
Find, to 3 sign	ificant figures, tl	he perimeter of e	each of the follo	wing circular sect	tors.
a	\wedge	b	^	c	

7 Find, in radians to 2 decimal places, the angle θ in each of the following circular sectors.

8 The minor arc *AB* of a circle, centre *O*, has length 46.2 cm. Given that $\angle AOB = 78.5^{\circ}$, find

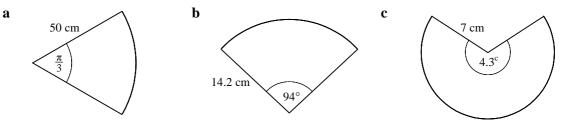
C2

1

2

3

4


5

6

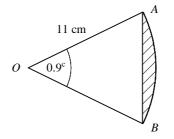
a the distance *OA*, **b** the perimeter of sector *OAB*.

Worksheet B continued

9 Find, in cm^2 to 1 decimal place, the area of each of the following circular sectors.

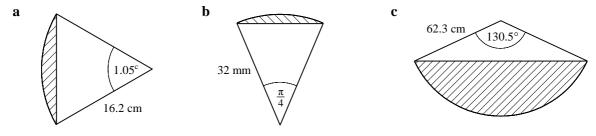
- PQ is an arc of a circle of radius 8 cm, centre O.Given that arc PQ has length 12 cm, find
 - **a** the angle, in radians, subtended by PQ at O,
 - **b** the area of sector *OPQ*.

TRIGONOMETRY

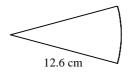

C2

A A A A A A A B

The diagram shows a circle of radius 11.6 cm, centre *O*. The arc of the circle *AB* subtends an angle of 1.4 radians at *O*. Find, to 3 significant figures,

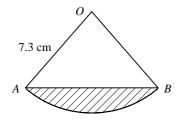

- **a** the perimeter of the minor sector *OAB*,
- **c** the area of the minor sector OAB,
- **b** the perimeter of the major sector *OAB*,
- **d** the area of the major sector *OAB*.

12



The diagram shows a circular sector *OAB*. Find the area of

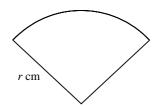
- **a** the sector *OAB*, **b** the triangle *OAB*,
- \mathbf{c} the shaded segment.
- 13 Find the area of the shaded segment in each of the following circular sectors.



The diagram shows a sector of a circle of radius 12.6 cm. Given that the perimeter of the sector is 31.7 cm, find its area.

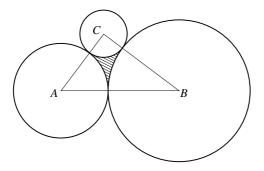
2

1

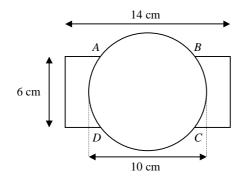


The diagram shows a sector OAB of a circle, centre O and radius 7.3 cm.

Given that the area of the sector is 38.4 cm^2 , find


- **a** the size of $\angle AOB$ in radians,
- **b** the perimeter of the shaded segment.

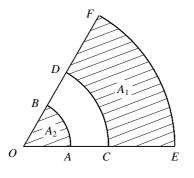
3


The diagram shows a sector of a circle of radius r cm. The area of the sector is 40 cm².

- **a** Show that the perimeter of the sector is $(2r + \frac{80}{r})$ cm.
- **b** Hence find the set of values of r for which the perimeter of the sector is less than 26 cm.
- 4

The diagram shows three circles with centres A, B and C, and radii 4 cm, 6 cm and 2 cm respectively. Each circle touches the other two circles.

- **a** Prove that triangle *ABC* is a right-angled triangle.
- **b** Find $\angle ABC$ in radians to 2 decimal places.
- **c** Show that the area of the shaded region enclosed by the three circles is 1.86 cm² to 3 significant figures.

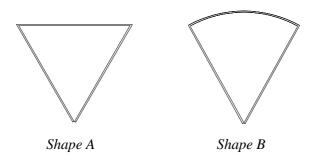


The diagram shows a company logo which consists of a circle of diameter 10 cm drawn on top of a rectangle measuring 6 cm by 14 cm. The centres of the circle and rectangle are coincident and the two shapes intersect at A, B, C and D.

- **a** Find the length of the chord of the circle *AB*.
- **b** Show that the perimeter of the logo is 42.5 cm to 3 significant figures.
- **c** Find the area of the logo.

6

5

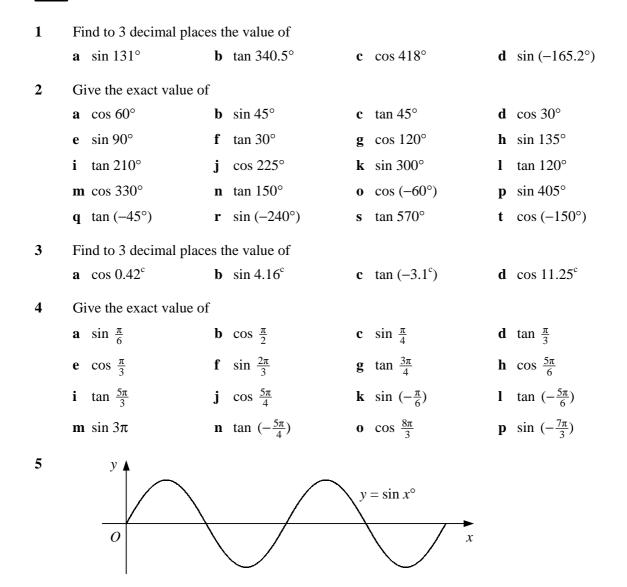


AB, *CD* and *EF* are arcs of concentric circles, centre *O*, such that *OACE* and *OBDF* are straight lines as shown in the diagram. The area of the shaded region *CEFD* is denoted by A_1 and the area of the shaded sector *OAB* by A_2 .

Given that OA = r cm, AC = 2 cm, OE = 8 cm and $\angle AOB = \theta$ radians,

- **a** find an expression for A_1 in terms of r and θ .
- Given also that $A_1 = 7A_2$,
- **b** show that r = 2.5

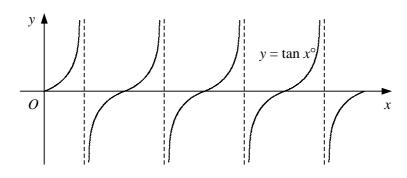
7



A girl is playing with a paper clip. She straightens the wire and then bends it to form an equilateral triangle, *Shape A* above. She then curves one side of the triangle to form a sector of a circle, *Shape B* above.

Find, to 1 decimal place, the percentage change in the area enclosed by the paper clip when it is changed from *Shape A* to *Shape B*, indicating whether this is an increase or decrease.

C2


Worksheet D

The graph shows the curve $y = \sin x^{\circ}$ in the interval $0 \le x \le 720$.

- **a** Write down the coordinates of any points where the curve intersects the coordinate axes.
- **b** Write down the coordinates of the turning points of the curve.

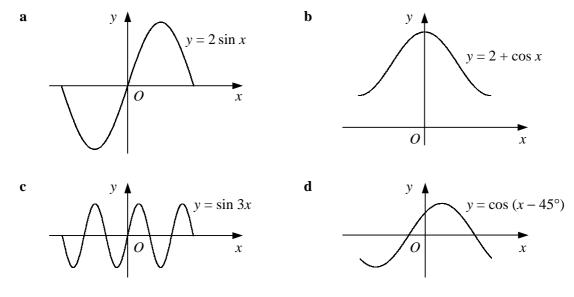
6

- The graph shows the curve $y = \tan x^{\circ}$ in the interval $0 \le x \le 720$.
- **a** Write down the coordinates of any points where the curve intersects the coordinate axes.
- **b** Write down the equations of the asymptotes.

Worksheet D continued

C2 TRIGONOMETRY

7 Describe the transformation that maps the graph of $y = \sin x^{\circ}$ onto the graph of


a
$$y = 3 \sin x^{\circ}$$
 b $y = \sin 4x^{\circ}$ **c** $y = \sin (x + 60)^{\circ}$ **d** $y = \sin (-x^{\circ})$

8 Sketch each of the following pairs of curves on the same set of axes in the interval $0 \le x \le 360^\circ$.

a $y = \cos x$	and	$y = 3 \cos x$	b $y = \sin x$	and	$y = \sin\left(x - 30^\circ\right)$
c $y = \cos x$	and	$y = \cos 2x$	d $y = \tan x$	and	$y = 2 + \tan x$
$e y = \sin x$	and	$y = -\sin x$	$\mathbf{f} y = \cos x$	and	$y = \cos\left(x + 60^\circ\right)$
g $y = \tan x$	and	$y = \tan \frac{1}{2}x$	h $y = \sin x$	and	$y = 1 + \sin x$

9 Each curve is shown for the interval $-180^\circ \le x \le 180^\circ$.

Write down the coordinates of the turning points of each curve in this interval.

10 Write down the period of each of the following graphs.

a $y = \sin x^{\circ}$	b $y = \tan x^{\circ}$	$\mathbf{c} y = 2\cos x^{\circ}$
d $y = \sin 2x^{\circ}$	$\mathbf{e} y = \tan \left(x + 30 \right)^{\circ}$	f $y = \cos \frac{1}{3}x^{\circ}$

11 Sketch each of the following curves for x in the interval $0 \le x \le 360$. Show the coordinates of any points of intersection with the coordinate axes and the equations of any asymptotes.

a	$y = \tan x^{\circ}$	b $y = \cos(x+30)^\circ$	c	$y = \sin 2x^{\circ}$
d	$y = 1 + \cos x^{\circ}$	$e y = \sin \frac{1}{2}x^{\circ}$	f	$y = \tan (x + 90)^{\circ}$
g	$y = \sin (x - 45)^{\circ}$	h $y = -\tan x^{\circ}$	i	$y = \cos \left(x - 120 \right)^{\circ}$

12 Sketch each of the following curves for x in the interval $0 \le x \le 2\pi$. Show the coordinates of any turning points and the equations of any asymptotes.

a $y = \cos x$	b $y = 3 \sin x$	c $y = \tan 2x$
$\mathbf{d} y = \sin\left(x - \frac{\pi}{3}\right)$	$e y = \cos \frac{1}{3}x$	$\mathbf{f} y = \sin x - 2$
g $y = \tan\left(x + \frac{\pi}{4}\right)$	h $y = \sin \frac{3}{4}x$	$\mathbf{i} y = \cos\left(x - \frac{\pi}{6}\right)$

C2

1	Find all values of x in the function of x is the function of x in the function of x is the function of x in the function of x is the function of x in the function of x is the function of x in the function of x is the function of x in the function of x is the function of x in the function of x is the function of x in the function of x is the function of x	the interval $0 \le x \le 360^\circ$ such that	nat
	a $\sin x = \frac{1}{2}$	b $\tan x = \sqrt{3}$ c $\cos x = \sqrt{3}$	$x = 0 \qquad \mathbf{d} \sin x = -1$
	$\mathbf{e} \cos x = \frac{\sqrt{3}}{2}$	f $\sin x = \frac{1}{\sqrt{2}}$ g $\tan x$	$x = -1$ h $\cos x = -\frac{1}{2}$
	$\mathbf{i} \sin x = -\frac{\sqrt{3}}{2}$	j $\tan x = \frac{1}{\sqrt{3}}$ k cos	$x = -\frac{1}{\sqrt{2}}$ l $\tan x = -\sqrt{3}$
2	Solve each equation for	θ in the interval $0 \le \theta \le 360^{\circ}$	giving your answers to 1 decimal place.
	a $\cos \theta = 0.4$	b $\sin \theta = 0.27$ c $\tan \theta$	$\theta = 1.6$ d sin $\theta = 0.813$
	e tan $\theta = 0.1$	$\mathbf{f} \cos \theta = 0.185 \qquad \mathbf{g} \sin \theta$	$\theta = -0.6$ h tan $\theta = -0.7$
	i $\cos \theta = -0.39$	j $\tan \theta = -3.4$ k $\cos \theta$	$\theta = -0.636$ l sin $\theta = -0.203$
3	Solve each equation for	x in the interval $0 \le x \le 360$.	
	Give your answers to 1	decimal place where appropriat	e.
	a $\sin(x-60)^\circ = 0.5$	b $\tan(x+30)^\circ = 1$	c $\cos(x-45)^\circ = 0.2$
	d $\tan(x+30)^\circ = 0.78$	e $\cos(x+45)^\circ = -0.5$	f $\sin(x-60)^\circ = -0.89$
	g $\cos(x+45)^\circ = 0.9$	h $\sin(x+30)^\circ = 0.14$	i $\cos(x-60)^\circ = 0.6$
	j $\sin(x-30)^\circ = -0.3$	k $\tan(x-60)^\circ = -1.2$	$6 \qquad \mathbf{l} \sin 2x^\circ = 0.5$
	$\mathbf{m} \cos 2x^\circ = 0.64$	n $\sin 2x^{\circ} = -0.18$	o $\tan 2x^{\circ} = -2.74$
	p sin $\frac{1}{2}x^{\circ} = 0.703$	$\mathbf{q} \tan 3x^\circ = 0.591$	r $\cos 2x^{\circ} = -0.415$
4	Solve each equation for	x in the interval $0 \le x \le 2\pi$ gives	ving your answers in terms of π .
	a $\sin x = 0$	b $\cos x = \frac{1}{2}$	c $\tan x = 1$
	d $\cos x = -1$	e $\tan x = -\frac{1}{\sqrt{3}}$	$\mathbf{f} \sin x = -\frac{1}{\sqrt{2}}$
	g $\tan(x + \frac{\pi}{6}) = \sqrt{3}$	h sin $(x - \frac{\pi}{4}) = \frac{1}{2}$	i $\cos(x + \frac{\pi}{3}) = -\frac{\sqrt{3}}{2}$
	j $\sin(x + \frac{\pi}{3}) = \frac{1}{\sqrt{2}}$	k cos $2x = -\frac{1}{\sqrt{2}}$	$1 \tan 3x = \frac{1}{\sqrt{3}}$
5	Solve each equation for	θ in the interval $-180^\circ \le \theta \le$	180°.

Solve each equation for θ in the interval $-180^\circ \le \theta \le 180^\circ$. Give your answers to 1 decimal place where appropriate.

a $\cos \theta = 0$	b $\tan 2\theta + 1 = 0$	c $\sin(\theta + 60^\circ) = 0.291$
d $2 \tan (\theta - 15^\circ) = 3.7$	$e \sin 2\theta - 0.3 = 0$	f $4\cos 3\theta = 2$
$\mathbf{g} 1 + \sin\left(\theta + 110^\circ\right) = 0$	h $5\cos(\theta - 27^\circ) = 3$	$\mathbf{i} 7 - 3 \tan \theta = 0$
$\mathbf{j} 3+8\cos 2\theta = 0$	$\mathbf{k} 2 + 6 \tan \left(\boldsymbol{\theta} + 92^{\circ} \right) = 0$	$1 1-4\sin \frac{1}{3}\theta = 0$

© Solomon Press

C2 TRIGONOMETRY

6 Solve each equation for x in the interval $0 \le x \le 180^\circ$. Give your answers to 1 decimal place where appropriate.

a $\tan(2x+30^\circ) = 1$	b $\sin(2x - 15^\circ) = 0$	c $\cos(2x+70^\circ) = 0.5$
d sin $(2x + 210^{\circ}) = 0.26$	e $\cos(2x - 38^\circ) = -0.64$	f $\tan(2x-56^\circ) = -0.32$
g $\cos(3x - 24^\circ) = 0.733$	h $\tan(3x+60^\circ) = -1.9$	i $\sin\left(\frac{1}{2}x + 18^\circ\right) = 0.572$

7 Solve each equation for x in the interval $0 \le x \le 2\pi$, giving your answers to 2 decimal places.

a $\tan x = 0.52$	b $\cos 2x = 0.315$	c $\sin(x + \frac{\pi}{4}) = 0.7$
$\mathbf{d} 3\cos x + 1 = 0$	e sin $\frac{1}{2}x = 0.09$	f $\tan 2x = -0.225$
g 3-4 sin $(x-\frac{\pi}{3})=0$	h $\tan(2x + \frac{\pi}{6}) = 2$	i $\cos 3x = -0.81$
j $5 + 3 \tan x = 0$	k $\cos(2x - \frac{\pi}{2}) = -0.34$	$\mathbf{l} 1 + 6\sin 2x = 0$

8 a Solve the equation

$$2y^2 - 3y + 1 = 0.$$

b Hence, find the values of x in the interval $0 \le x \le 360^\circ$ for which $2\sin^2 x - 3\sin x + 1 = 0.$

9 Solve each equation for θ in the interval $0 \le \theta \le 360$.

Give your answers to 1 decimal place where appropriate.

$\mathbf{a} \sin^2 \theta^\circ = 0.75$	b $1 - \tan^2 \theta^\circ = 0$
$\mathbf{c} 2\cos^2\theta^\circ + \cos\theta^\circ = 0$	d $\sin \theta^{\circ}(4\cos \theta^{\circ} - 1) = 0$
$\mathbf{e} 4\sin\theta^\circ = \sin\theta^\circ\tan\theta^\circ$	$\mathbf{f} (2\cos\theta^\circ - 1)(\cos\theta^\circ + 1) = 0$
$\mathbf{g} \tan^2 \theta^\circ - 3 \tan \theta^\circ + 2 = 0$	$\mathbf{h} 3\sin^2\theta^\circ - 7\sin\theta^\circ + 2 = 0$
$\mathbf{i} \tan^2 \theta^\circ - \tan \theta^\circ = 6$	$\mathbf{j} 6\cos^2\theta^\circ - \cos\theta^\circ - 2 = 0$
$\mathbf{k} 4\sin^2\theta^\circ + 3 = 8\sin\theta^\circ$	$\mathbf{l} \cos^2 \theta^\circ + 2\cos \theta^\circ - 1 = 0$
$\mathbf{m} \tan^2 \theta^\circ + 3 \tan \theta^\circ - 1 = 0$	n $3\sin^2\theta^\circ + \sin\theta^\circ = 1$

10 a Sketch the curve $y = \cos x^{\circ}$ for x in the interval $0 \le x \le 360$.

- **b** Sketch on the same diagram the curve $y = \cos (x + 90)^{\circ}$ for x in the interval $0 \le x \le 360$.
- **c** Using your diagram, find all values of x in the interval $0 \le x \le 360$ for which

$$\cos x^\circ = \cos (x + 90)^\circ.$$

- **11 a** Sketch the curves $y = \cos x^\circ$ and $y = \cos 3x^\circ$ on the same set of axes for x in the interval $0 \le x \le 360$.
 - **b** Solve, for *x* in the interval $0 \le x \le 360$, the equation

 $\cos x^\circ = \cos 3x^\circ$.

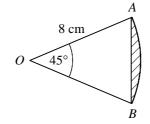
c Hence solve, for *x* in the interval $0 \le x \le 180$, the equation

 $\cos 2x^\circ = \cos 6x^\circ.$

Worksheet F

TRIGONOMETRY

C2

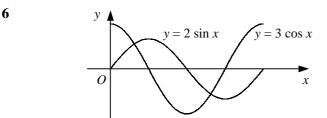

a Given that $4 \sin x + \cos x = 0$, show that $\tan x = -\frac{1}{4}$. 1 **b** Hence, find the values of x in the interval $0 \le x \le 360^\circ$ for which $4\sin x + \cos x = 0$. giving your answers to 1 decimal place. 2 **a** Show that $5\sin^2 x + 5\sin x + 4\cos^2 x \equiv \sin^2 x + 5\sin x + 4.$ **b** Hence, find the values of x in the interval $0 \le x \le 360^\circ$ for which $5\sin^2 x + 5\sin x + 4\cos^2 x = 0$ Solve each equation for x in the interval $0 \le x \le 360^\circ$. 3 Give your answers to 1 decimal place where appropriate. a $2\sin x - \cos x = 0$ **b** $3\sin x = 4\cos x$ **c** $\cos^2 x + 3\sin x - 3 = 0$ **d** $3\cos^2 x - \sin^2 x = 2$ **e** $2\sin^2 x + 3\cos x = 3$ **f** $3\cos^2 x = 5(1 - \sin x)$ **g** $3 \sin x \tan x = 8$ **h** $\cos x = 3 \tan x$ i $3\sin^2 x - 5\cos x + 2\cos^2 x = 0$ **j** $2\sin^2 x + 7\sin x - 2\cos^2 x = 0$ $\sin^2 x - 9\cos x - \cos^2 x = 5$ **k** $3\sin x - 2\tan x = 0$ Solve each equation for θ in the interval $-\pi \le \theta \le \pi$ giving your answers in terms of π . 4 **a** $4\cos^2\theta = 1$ **b** $4\sin^2\theta + 4\sin\theta + 1 = 0$ $c \cos^2 \theta + 2\cos \theta - 3 = 0$ **d** $3\sin^2\theta - \cos^2\theta = 0$ e $4\sin^2\theta - 5\sin\theta + 2\cos^2\theta = 0$ f $\sin^2 \theta - 3\cos \theta - \cos^2 \theta = 2$ Prove that 5 $\mathbf{a} \quad (\sin x + \cos x)^2 \equiv 1 + 2\sin x \cos x$ **b** $\frac{1}{\cos x} - \cos x \equiv \sin x \tan x, \quad \cos x \neq 0$ $\mathbf{c} \quad \frac{\cos^2 x}{1-\sin x} \equiv 1 + \sin x, \quad \sin x \neq 1 \qquad \qquad \mathbf{d} \quad \frac{1+\sin x}{\cos x} \equiv \frac{\cos x}{1-\sin x}, \quad \cos x \neq 0$ **a** Prove the identity 6 $(\cos x - \tan x)^2 + (\sin x + 1)^2 \equiv 2 + \tan^2 x.$ **b** Hence find, in terms of π , the values of x in the interval $0 \le x \le 2\pi$ such that $(\cos x - \tan x)^2 + (\sin x + 1)^2 = 3.$ $f(x) \equiv \cos^2 x + 2\sin x, \quad 0 \le x \le 2\pi.$ 7 **a** Prove that f(x) can be expressed in the form $f(x) = 2 - (\sin x - 1)^2$. **b** Hence deduce the maximum value of f(x) and the value of x for which this occurs.

PMT

TRIGONOMETRY

- 1 Find, in terms of π , the values of x in the interval $0 \le x \le 2\pi$ for which
 - **a** $3 \tan x \sqrt{3} = 0$,
 - **b** $2\cos(x+\frac{\pi}{3})+\sqrt{3}=0.$
- 2 Given that $\cos A = \sqrt{3} 1$,
 - **a** find the value of $\sin^2 A$ in the form $p\sqrt{3} + q$ where p and q are integers,
 - **b** show that $\tan^2 A = \frac{\sqrt{3}}{2}$.
- 3

C2


The diagram shows sector *OAB* of a circle, centre *O*, radius 8 cm, in which $\angle AOB = 45^{\circ}$.

- **a** Find the perimeter of the sector in centimetres to 1 decimal place.
- **b** Show that the area of the shaded segment is $8(\pi 2\sqrt{2})$ cm².
- 4 Find, to 1 decimal place, the values of θ in the interval $0 \le \theta \le 360^\circ$ for which $2\sin^2 \theta + \sin \theta - \cos^2 \theta = 2.$

5 Solve, for *x* in the interval $-\pi \le x \le \pi$, the equation

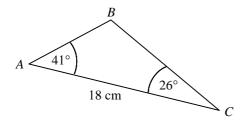
$$3\sin^2 x = 4(1 - \sin x),$$

giving your answers to 2 decimal places.

The diagram shows the curves $y = 2 \sin x$ and $y = 3 \cos x$ for x in the interval $0 \le x \le 2\pi$. Find, to 2 decimal places, the coordinates of the points where the curves intersect in this interval.

7 **a** Sketch the curve $y = \cos 2x^{\circ}$ for x in the interval $0 \le x \le 360$.

- **b** Find the values of x in the interval $0 \le x \le 360$ for which $\cos 2x^\circ = -\frac{1}{2}$.
- 8 Solve, for θ in the interval $0 \le \theta \le 360$, the equation

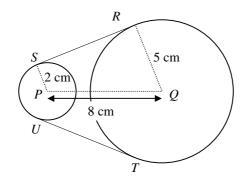

$$12\cos\theta^\circ = 7\tan\theta^\circ$$
,

giving your answers to 1 decimal place.

C2 TRIGONOMETRY

- 9 Given that $\tan 15^\circ = \frac{\tan 60^\circ \tan 45^\circ}{1 + (\tan 60^\circ \times \tan 45^\circ)}$,
 - **a** show that $\tan 15^\circ = 2 \sqrt{3}$,
 - **b** find the exact value of tan 345°.
- 10 Find, to an appropriate degree of accuracy, the values of x in the interval $0 \le x \le 360^\circ$ for which $\sin^2 x + 5 \cos x 3 \cos^2 x = 2$.

11


The diagram shows triangle *ABC* in which AC = 18 cm, $\angle BAC = 41^{\circ}$ and $\angle ACB = 26^{\circ}$. Find to 3 significant figures

- **a** the length *BC*,
- **b** the area of triangle *ABC*.
- 12 Solve, for θ in the interval $0 \le \theta \le 360^\circ$, the equation $(6\cos\theta - 1)(\cos\theta + 1) = 3.$
- 13 Find, in degrees to 1 decimal place, the values of x in the interval $-180^\circ \le x \le 180^\circ$ for which $\sin^2 x + 5 \sin x = 2 \cos^2 x$.
- 14 Prove that

a
$$\sin^4 \theta - 2 \sin^2 \theta \equiv \cos^4 \theta - 1$$
,

b
$$\frac{\sin\theta}{1+\cos\theta} + \frac{1+\cos\theta}{\sin\theta} \equiv \frac{2}{\sin\theta}$$
, for $\sin\theta \neq 0$.

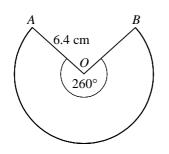
15

The gears in a toy are shown in the diagram above.

A thin rubber band passes around two circular discs. The centres of the discs are at P and Q where PQ = 8 cm and their radii are 2 cm and 5 cm respectively. The sections of the rubber band not in contact with the discs, RS and TU, are assumed to be taught.

- **a** Show that $\angle PQR = 1.186$ radians to 3 decimal places.
- **b** Find the length *RS*.
- **c** Find the length of the rubber band in this situation.

- Find, in radians to 2 decimal places, the values of θ in the interval $0 \le \theta \le 2\pi$ for which **a** $\sin(\theta + \frac{\pi}{4}) = 0.4$, (3) **b** $1-3\cos 2\theta = 0.$ (5) **a** Sketch the curve $y = \sin 3x$ for x in the interval $0 \le x \le 180^\circ$, showing the coordinates of the turning points of the curve. (3)
- **b** Solve, for θ in the interval $0 \le \theta \le 360^\circ$, the equation


$$\tan^2\theta - 2\tan\theta - 3 = 0. \tag{6}$$

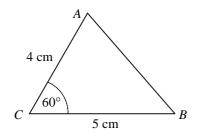
3

C2

1

2

The diagram shows the major sector OAB of a circle, centre O, radius 6.4 cm. The reflex angle subtended by the major arc AB at O is 260° .


- **a** Express 260° in radians, correct to 3 decimal places. (1)
- **b** Find the perimeter of the major sector *OAB*. (3)
- c Find the area of the major sector OAB. (2)
- Solve, for θ in the interval $0 \le \theta \le 360^\circ$, the equation 4

$$3\cos^2\theta + 6\cos\theta = 2\sin^2\theta + 6,$$

giving your answers to 1 decimal place.

(7)

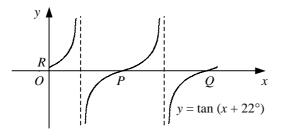
The diagram shows triangle ABC in which AC = 4 cm, BC = 5 cm and $\angle ACB = 60^{\circ}$.

- **a** Find the exact area of triangle *ABC*. (2)
- **b** Show that $AB = \sqrt{21}$ cm. (3)
- **c** Find the value of sin ($\angle ABC$) in the form $k\sqrt{7}$ where k is an exact fraction. (3)

Find, to 1 decimal place, the values of x in the interval $0 \le x \le 360$ for which 6

$$\tan (2x + 15)^\circ = 2. \tag{6}$$

7 Find the values of
$$\theta$$
 in the interval $0 \le \theta \le 360^\circ$ for which
 $\sin \theta \tan \theta - \cos \theta = 1.$ (8)


C2 TRIGONOMETRY

(3)

- 8 The line with equation y = 6 intersects the circle with equation $x^2 + y^2 10x 2y 3 = 0$ at the points *P* and *Q*.
 - **a** Find the coordinates of the centre and the radius of the circle. (3)
 - **b** Find the coordinates of the points *P* and *Q*.
 - c Find the area of the minor segment enclosed by the chord PQ and the circle. (6)
- 9 Find the values of θ in the interval $0 \le \theta \le 360^\circ$ for which

$$5\sin^2\theta + 5\sin\theta + 2\cos^2\theta = 0.$$
 (8)

10

The diagram shows the curve $y = \tan(x + 22^\circ)$ for x in the interval $0 \le x \le 360^\circ$.

- **a** Write down the coordinates of the points P and Q where the curve crosses the x-axis. (2)
- **b** Find the coordinates of the point R where the curve meets the y-axis. (1)
- **c** Write down the equations of the curve's asymptotes.

11 a Find, to 1 decimal place, the values of x in the interval $0 \le x \le 360^\circ$, for which

$$5\sin x = 2\cos x. \tag{4}$$

b Solve, for *y* in the interval $0 \le y \le 2\pi$, the equation

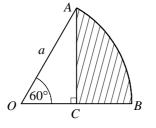
$$2\sin^2 y - \sin y = 1,$$

giving your answers in terms of π .

12 Solve, for θ in the interval $-180^\circ \le \theta \le 180^\circ$, the equation

$$3\cos^2\theta - 5\cos\theta + 2\sin^2\theta = 0,$$

giving your answers to 1 decimal place.


(7)

(1)

(6)

(2)

13

The diagram shows the circular sector OAB, centre O. The point C lies on OB such that AC is perpendicular to OB.

Given that OA = a, and that $\angle AOB = 60^{\circ}$,

- **a** find the area of sector *OAB* in terms of *a* and π , (3)
- **b** find the length OC in terms of a,
- c show that the area of the shaded region bounded by the arc *AB* and the straight lines *AC* and *BC* is given by $\frac{1}{24}a^2(4\pi 3\sqrt{3})$. (5)

C2

Worksheet I

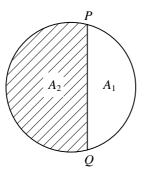
1	Find, to 1 decimal place, the values of x in the interval $-180^{\circ} \le x \le 180^{\circ}$ for which a $\cos (x + 40^{\circ}) = 0.3$, b $2 + \tan 2x = 0$.	(3) (5)
2	Find, to 1 decimal place, the values of x in the interval $0 \le x \le 360$ for which $2 \tan^2 x^\circ - 4 \tan x^\circ + 1 = 0.$	(6)
3	$A \xrightarrow{O} B$	
	The diagram shows sector OAB of a circle, centre O , radius 15 cm.	
	 Given that ∠AOB = θ radians and that the length of the arc AB is 32.1 cm, a find the value of θ, b find the area of sector OAB. 	(2) (2)
4	Solve, for x in the interval $0 \le x \le \pi$, the equation	
	$\sin\left(2x-\frac{\pi}{3}\right)=\frac{1}{2},$	
	giving your answers in terms of π .	(6)
5	 a Given that sin A = 1 - √2, show that cos² A + 2 sin A = 0. b Sketch the curve y = sin (x + π/3) for x in the interval 0 ≤ x ≤ 2π. Label on your sketch i the value of x at each point where the curve intersects the x-axis, 	(4)
	ii the coordinates of the maximum and minimum points of the curve.	(5)
6	Find the values of x in the interval $0 \le x \le 360^\circ$ for which $2\sin^2 x + \sin x + 1 = \cos^2 x.$	(8)
7	$P = 0.7 \text{ radians.}$ a Find the size of $\angle PRQ$ in radians to 2 decimal places.	(3)

The point *S* lies on *PR* such that PS = 10 cm. The shaded region is bounded by the straight lines *QR* and *RS* and the arc *QS* of a circle, centre *P*.

b Find the area of the shaded region.

(6)

PMT


C2 TRIGONOMETRY

8	a Given that $0 < A < 90^{\circ}$, and that $\sin A = \frac{\sqrt{5}}{3}$,	
	i show that $\cos A = \frac{2}{3}$,	
	ii find the exact value of $\tan A$.	(5)
	b Find the values of x in the interval $0 \le x \le 360^\circ$ for which	
	$5\sin x\cos x + \cos x = 0.$	(6)
9	Find the values of θ in the interval $0 \le \theta \le 180$ for which	
	$\cos\left(2\theta+30\right)^\circ=-\tfrac{1}{2}.$	(6)

- a Sketch the curve y = cos (x 30)° for x in the interval -180 ≤ x ≤ 180, showing the coordinates of any maximum or minimum points on the curve. (4)
 b Find the x-coordinates of the points where the curve intersects the line y = 0.2 in this
 - interval, giving your answers to 1 decimal place. (3)
- 11 Find the values of x in the interval $0 \le x \le 360^\circ$ for which

$$4\cos^2 x - \cos x - 2\sin^2 x = 0.$$
 (8)

12

The diagram shows a circle of radius r cm. The chord PQ divides the circle into the unshaded minor segment of area A_1 and the shaded major segment of area A_2 .

Given that PQ subtends an angle of θ radians at the centre of the circle,

a find an expression for A_1 in terms of r and θ . (3)

Given also that $\theta = \frac{5\pi}{6}$,

b show that
$$A_1: A_2 = (5\pi - 3): (7\pi + 3).$$
 (6)

13 Find, in terms of π , the values of x in the interval $0 \le x \le 2\pi$ for which

$$3\tan x - 2\cos x = 0.$$
 (7)

14 In triangle ABC, AB = 5 cm, AC = 7 cm and BC = 8 cm.

- **a** Find the value of $\cos(\angle ABC)$. (3)
- **b** Show that the area of triangle *ABC* is $10\sqrt{3}$ cm². (5)

15 a Show that

$$(2 + \cos^2 \theta)(1 + \tan^2 \theta) \equiv 3 + 2\tan^2 \theta.$$
(3)

b Hence find the values of θ in the interval $0 \le \theta \le 360^\circ$ for which

$$(2 + \cos^2 \theta)(1 + \tan^2 \theta) = 7.$$
 (5)

© Solomon Press