Trigonometry

. 11	It i	s given that $5 \sin 3\theta^{\circ} = 2 \cos 3\theta^{\circ}$.	
	(i)	Show that $\tan 3\theta^{\circ} = 0.4$.	[1]
	(ii)	Hence find the values of θ , in the interval $0 \le \theta \le 180$, for which	-
		$5\sin 3\theta^{\circ} = 2\cos 3\theta^{\circ}.$	
(4		Give your answers correct to 1 decimal place.	[4]
12			
1.2	(i)	Express $3\cos^2\theta^\circ - 2\sin\theta^\circ$ in terms of $\sin\theta^\circ$.	[1]
	(ii)	Hence solve the equation	*2
		$3\cos^2\theta^\circ - 2\sin\theta^\circ = 2,$	
	30	giving all values such that $0 \le \theta \le 360$. Where appropriate, give your answers correlated 1 decimal place.	ct to
3	(i)	Sketch the graph of $y = \tan x^{\circ}$ for values of x such that $0 \le x \le 360$.	[2]
	(ii)	Sketch on a separate diagram the graph of $y = \tan(x - 90)^{\circ}$ for values of x such that $0 \le x \le 3$	360. [2]
	(iii)	Solve the equation $tan(x - 90)^{\circ} = 1$ for values of x such that $0 \le x \le 360$.	[2]
good .			
4	(i)	Show that $\frac{\sin^2 \theta^{\circ}}{1 - \sin^2 \theta^{\circ}} \equiv \tan^2 \theta^{\circ}$.	[2
	(ii)	Hence or otherwise find the values of θ , in the interval $0 \le \theta \le 180$, for which	
		$\frac{\sin^2\theta^{\circ}}{1-\sin^2\theta^{\circ}}=1.$	[2]
Ŝ	(i)	On a single diagram, sketch and label the following graphs for $0 \le x \le 360$.	6
		(a) $y = \sin x^{\circ}$	[1]
		(b) $y = \sin 2x^{\circ}$	[2]
	(ii)	Write down the number of solutions of the equation $\sin 2x^{\circ} = c$, given that $0 < c < 1$ and $0 \le x \le c$	360. [1]
	¥		* ***
6	(i)	Write down the period of $\sin x^{\circ}$, and hence write down the period of $\sin 6x^{\circ}$.	[2]
	(ii)	Solve the equation $\sin 6x^{\circ} = 0.5$, giving all values of x such that $0 \le x \le 90$.	[4]
	(iii)	Find the smallest positive solution of the equation $\sin 6x^{\circ} = -0.5$.	[2]