Factor and Remainder Theorem

2

1 Given that x - 2 is a factor of

$$ax^3 + ax^2 + ax - 42$$

find the value of the constant a.

[3]

Polynomials P(x) and Q(x) are defined by

$$P(x) = x^3 - 4x^2 + ax + 16,$$

$$Q(x) = x^3 - 4x^2 - 14x + 12.$$

(i) The remainder when P(x) is divided by x - 6 is 4. Show that the value of the constant a is -14.

[3]

(ii) Hence solve the equation Q(x) = 0, giving non-integer roots in exact form.

[5]

3. The polynomial f(x) is defined by

$$f(x) = ax^3 + bx^2 + 4,$$

where a and b are constants. It is given that x + 2 is a factor of f(x). It is also given that, when f(x) is divided by x - 3, the remainder is 130. Find the values of a and b.

 \downarrow The polynomial f(x) is defined by

$$f(x) = x^3 + ax^2 - 2ax + c,$$

where a and c are constants.

(i) It is given that (x-2) is a factor of f(x). Find the value of c.

[2]

(ii) It is further given that, when f(x) is divided by (x-1), the remainder is 5. Find the value of a.

31

(i) Find the remainder when $x^3 - 8x^2 + 11x$ is divided by (x - 2).

[2]

(ii) Find the three roots of the equation

$$x^3 - 8x^2 + 11x + 2 = 0,$$

giving the two non-integer roots in the exact form $p \pm \sqrt{q}$, where p and q are integers.

(iii) Given that |y| = x, where x satisfies the cubic equation in part (ii), state the possible values of y.

[2]

[5]