Arithmetic Sequences | | The first term of an arithmetic progression is 14 and the 20th term is 25.4. | | 82 | |-----|---|-----------------------|------------------| | | (i) Find the common difference. | [| [2] | | | (ii) Find the sum of the first 500 terms. | . [| [2] | | | | ** | | | 2 | An arithmetic progression has first term a and common difference d . The sum of the first term a . Another arithmetic progression also has first term a . This progression has common a and a and its 20th term is 234. Find the values of a and a . | non differen | is
ice
[6] | | 3 | An arithmetic progression has first term 1.71 and common difference 0.02. A geometric has first term 250 and common ratio r . The sum to infinity of the geometric progression the sum of the first 80 terms of the arithmetic progression. Find the value of r . | on is equal t | on
to
[5] | | | • | | | | 4 | The first term of a sequence is 8 and the second term is 10. | | | | | (i) Given that the terms of the sequence form an arithmetic progression, find the statement 100 terms. | | rst
3] | | | (ii) Given instead that the terms of the sequence form a geometric progression and the first K terms is greater than 10^{15} , find the least possible value of K . | | of
5] | |).* | | 6 | | | | An arithmetic progression has first term 8 and common difference 1.2. The sum of the arithmetic progression is denoted by S_n . | e first <i>n</i> term | ıs of | | - S | A geometric progression has first term 8 and common ratio 1.2. The sum of the first geometric progression is denoted by G . | 35 terms of | the | | r | Given that $S_n > G$, find the least possible value of n . | | [8] | | | | | 3 |