1 (i) The course for a yacht race is a triangle, as shown in Fig. 11.1. The yachts start at A , then travel to B, then to C and finally back to A.

Not to scale

Fig. 11.1
(A) Calculate the total length of the course for this race.
(B) Given that the bearing of the first stage, AB , is 175°, calculate the bearing of the second stage, BC.
(ii) Fig. 11.2 shows the course of another yacht race. The course follows the arc of a circle from P to Q , then a straight line back to P . The circle has radius 120 m and centre O ; angle $\mathrm{POQ}=136^{\circ}$.

Fig. 11.2

Calculate the total length of the course for this race.

2 Given that $140^{\circ}=k \pi$ radians, find the exact value of k.

3 In Fig. 7, A and B are points on the circumference of a circle with centre O . Angle $\mathrm{AOB}=1.2$ radians .

The arc length $A B$ is 6 cm .

Not to scale

Fig. 7
(i) Calculate the radius of the circle.
(ii) Calculate the length of the chord AB .

Not to
scale

Fig. 7
Fig. 7 shows a sector of a circle of radius 5 cm which has angle θ radians. The sector has area $30 \mathrm{~cm}^{2}$.
(i) Find θ.
(ii) Hence find the perimeter of the sector.

Fig. 10.1 shows Jean's back garden. This is a quadrilateral $A B C D$ with dimensions as shown.

Fig. 10.1
(i) (A) Calculate AC and angle ACB. Hence calculate AD.
(B) Calculate the area of the garden.
(ii) The shape of the fence panels used in the garden is shown in Fig. 10.2. EH is the arc of a sector of a circle with centre at the midpoint, M , of side FG , and sector angle 1.1 radians, as shown. $\mathrm{FG}=1.8 \mathrm{~m}$.

Not to scale

Fig. 10.2
Calculate the area of one of these fence panels.
(i)

Not to scale

Fig. 10.1
At a certain time, ship S is 5.2 km from lighthouse L on a bearing of 048°. At the same time, ship T is 6.3 km from L on a bearing of 105°, as shown in Fig. 10.1.

For these positions, calculate
(A) the distance between ships S and T ,
(B) the bearing of S from T .
(ii)

Not to
scale

Fig. 10.2
Ship S then travels at $24 \mathrm{~km} \mathrm{~h}^{1}$ anticlockwise along the arc of a circle, keeping 5.2 km from the lighthouse L, as shown in Fig. 10.2.

Find, in radians, the angle θ that the line LS has turned through in 26 minutes.
Hence find, in degrees, the bearing of ship S from the lighthouse at this time.

7 Fig. 11.1 shows a village green which is bordered by 3 straight roads $A B, B C$ and $C A$. The road AC runs due North and the measurements shown are in metres.

Fig. 11.1
(i) Calculate the bearing of B from C, giving your answer to the nearest 0.1°.
(ii) Calculate the area of the village green.

The road $A B$ is replaced by a new road, as shown in Fig. 11.2. The village green is extended up to the new road.

Not to
scale

Fig. 11.2
The new road is an arc of a circle with centre O and radius 130 m .
(iii) (A) Show that angle AOB is 1.63 radians, correct to 3 significant figures.
(B) Show that the area of land added to the village green is $5300 \mathrm{~m}^{2}$ correct to 2 significant figures.

