\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 \& ii \& \[
\begin{aligned}
\& \mathrm{AB}=7.8(0), 7.798 \text { to } 7.799 \text { seen } \\
\& \text { area }=52.2 \text { to } 52.3 \\
\& \text { tan } 0.91=\mathrm{ST} / 12.6 \\
\& \mathrm{ST}=12.6 \times \tan 0.91 \text { and } \\
\& \text { completion }(16.208 \ldots) \\
\& \text { area } \mathrm{OSTR}=[2 \times][0.5 \times] 12.6 \times \\
\& \text { their }(16.2) \mathrm{nb} 204 . \ldots . \\
\& \text { area of sector }=0.5 \times 12.6^{2} \times 1.82 \\
\& =144.47 \ldots \\
\& \text { Logo }=59.6 \text { to } 60.0 \\
\& \text { arc }=12.6 \times 1.82[=22.9 . . .] \\
\& \text { perimeter }=55.3 \text { to } 55.4
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
E1 \\
M1 \\
M1 \\
A1 \\
A1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
M1 for correct use of sine rule For long methods M1A1 for art 7.8 \\
M1 for \([2 \times][0.5 \times]\) their \(\mathrm{AB} \times 11.4 \times\) \(\sin 36^{\circ}\) \\
Accept 16.2 if ST is explicit but for long methods with pa check that their explicit expression \(=16.2\) \\
oe using degrees \\
soi by correct ans Accept 144, 144.5 \\
oe using degrees
\end{tabular} \& 4

8 \\
\hline
\end{tabular}

| Question |  | Answer | Marks | Guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | (i) | $\begin{aligned} & 1.2 r=4.2 \\ & 3.5 \text { cao } \end{aligned}$ | M1 <br> A1 <br> [2] | or $\frac{68.7549 \ldots}{360} \times 2 \pi r=4.2$ with $\theta$ to 3 sf or better | B2 if correct answer unsupported |
| 2 | (ii) | $\begin{aligned} & \cos 0.6=\frac{d}{\text { their3.5 }} \\ & 2.888 . . \text { to } 2.9 \end{aligned}$ | M1 <br> A1 <br> [2] | or $\cos 34.377 . .=\frac{d}{\text { their3.5 }}$ with $\theta$ to 3 sf or better | $\begin{aligned} & \text { or correct use of Sine Rule with } 0.9708 \\ & \left(55.623^{\circ}\right) \\ & \text { or area }=5.709=0.5 \times h \times 3.952, \\ & \text { or } 3.5^{2}-1.976^{2}=d^{2} \end{aligned}$ |


| Question |  |  | Answer | Marks | Guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | (i |  | $\begin{aligned} & \sin (1 / 2 \mathrm{COD})=3.5 / 5 \\ & 1 / 2 \mathrm{COD}=0.7753(97496 \ldots) \\ & \\ & \text { so COD }=1.55 \\ & \text { area of sector }=1 / 2 \times 11^{2} \times 1.55(07 . .) \\ & {\left[=93.8 \mathrm{~m}^{2} \text { to } 3 \mathrm{sf}\right]} \\ & \text { area of triangle }=1 / 2 \times 5^{2} \times \sin 1.55(07 . .) \\ & \text { or } 1 / 2 \times 7 \times 3.57 \ldots \\ & \text { their } 93.8-\text { their } 12.497 \text { soi } \\ & 81 \text { to } 81.4 \mathrm{~m}^{2} \end{aligned}$ | M1 <br> M1 <br> M1* <br> M1* <br> M1dep* <br> A1 <br> [6] | $\begin{aligned} & \cos (C O D)=\frac{5^{2}+5^{2}-7^{2}}{2 \times 5 \times 5} \\ & \operatorname{COD}=\cos ^{-1}(1 / 50)(\text { or }=1.550 \ldots) \end{aligned}$ <br> or equivalent in degrees <br> or $1 / 2 \times 7 \times 5 \times \cos (1 / 2 C O D)$ oe 12.497... implies M1 | must see $88.85 \times \frac{\pi}{180}$ if working in degrees ( 88.85 or better) $\text { M0 for area of triangle }=1 / 2 \times 5^{2}$ |
| 3 | (ii | (A) | sector angle $=2 \pi-1.55$ soi <br> $7.4 \times$ their $4.73(. .$.$) soi$ their arc $\div 0.8$ <br> 43 cao |  | may be embedded in circumference removed arc <br> may be implied by answer 43.78... | $\begin{aligned} & =4.73 \text { to } 3 \mathrm{sf} \\ & \\ & \approx 35 \mathrm{~m} \\ & \text { arc length must be dimensionally } \\ & \text { correct, and must be an arc, not a } \\ & \text { radius. } \end{aligned}$ |
| 3 | (ii | (B) | $\begin{aligned} & 11 \times 4.73(\ldots) \div 0.8 \\ & 22 \text { cao } \end{aligned}$ | M1 <br> A1 <br> [2] | $\text { or } \frac{11}{7.4} \times 43.7 \ldots$ | $\begin{aligned} & \text { or } \\ & \frac{2 \pi \times 11-1.55 \times 11}{0.8}=\frac{69.16-17.05}{0.8} \end{aligned}$ |


| 4 | $\begin{aligned} & \text { area sector }=\frac{1}{2} \times r^{2} \times \frac{\pi}{6}\left[=\frac{\pi r^{2}}{12}\right] \\ & \text { area triangle }=\frac{1}{2} \times a^{2} \times \sin \frac{\pi}{6}\left[=\frac{a^{2}}{4}\right] \\ & 1 / 2 a^{2} \times 1 / 2=1 / 2 \times r^{2} \times \frac{\pi}{6} \times 1 / 2 \end{aligned}$ <br> $\frac{a^{2}}{4}=\frac{\pi r^{2}}{24}$ o.e. and completion to given answer | M1 <br> M1 <br> M1 <br> A1 | soi <br> soi <br> soi | allow $\sin 30$ <br> no follow through marks available <br> at least one correct intermediate step required, and no wrong working to obtain given answer |
| :---: | :---: | :---: | :---: | :---: |


| 5 | radius $=65[\mathrm{~cm}]$ | 3 | M1 for $1 / 2 \times r^{2} \times 0.4[=8.45]$ o.e. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| and M1 for $r^{2}=\frac{169}{4}$ o.e. $[=42.25]$ |  |  |  |$\quad 3$| 3 |
| :--- |


| 6 | i(A) | 150 (cm) or 1.5 m | 2 | M1 for $2.5 \times 60$ or $2.5 \times 0.6$ or for 1.5 with no units | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | i(B) | $\begin{aligned} & 1 / 2 \times 60^{2} \times 2.5 \text { or } 4500 \\ & 1 / 2 \times 140^{2} \times 2.5 \text { or } 24500 \end{aligned}$ <br> subtraction of these $20000\left(\mathrm{~cm}^{2}\right)$ isw | M1 <br> M1 <br> DM1 <br> A1 | or equivalents in $\mathrm{m}^{2}$ <br> or $2 \mathrm{~m}^{2}$ | 4 |
|  | ii(A) | attempt at use of cosine rule | M1 | condone 1 error in substitution |  |
|  |  | $\cos \mathrm{EFP}=\frac{3.5^{2}+2.8^{2}-1.6^{2}}{2 \times 2.8 \times 3.5} \text { o.e. }$ <br> 26.5 to 26.65 or 27 | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ |  | 3 |
|  | ii(B) | $\begin{aligned} & 2.8 \sin \text { (their EFP) o.e. } \\ & 1.2 \text { to } 1.3 \text { [m] } \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ |  | 2 |

