1	$27 = \frac{1}{2} r^2 \times 1.5$ oe	M1	or $27 = \frac{85.943669}{360} \times \pi r^2$	angle in degrees rounded to 2 sf or more
	r = 6 soi	A1	may be embedded in formula for arc length	may be implied by later work eg 9 or 21
	their $r \times 1.5$	M1	or their $\frac{85.943639}{360} \times 2\pi \times$ their r	if r is incorrect, we must see their $r \times 1.5 [+2r]$ for M1 if r is correct, M1 may be implied by 9 or 21
	21 [cm] cao	A1 [4]	allow full marks for recovery from working with rounded value of θ in degree form	B4 for 21 unsupported www

2	$\frac{1}{2} \times 12.4^2 \times 2.1 \ (= 161.448)$	M1*	or $\pi \times \frac{120.32}{360} \times 12.4^2$	angle in degrees to 3 sf or better
	$\frac{1}{2} \times 12.4^2 \times \sin 2.1$ (= 66.3 to 66.4) or $\frac{1}{2} \times 21.5(121) \times 6.16(9)$	M1*	angle in degrees to 3 sf or better	may be implied by 2.81(7168325) (degrees) or 2.53(5559362) (grad)
	their 161.448 – their 66.36	M1dep*		
	95 to 95.1	A1		if unsupported, B4 for 95.08(446) r.o.t. to 4 sf or better
		[4]		

3	$45 = \frac{1}{2} r^2 \times 1.6$ oe	M1	$45 = \pi r^2 \times \frac{91.673}{360}$	
	$r^2 = 90/1.6$ oe	M1		
	r = 7.5 or exact equivalent cao	A1	or B3 www	allow recovery to 7.5 if working in
				degrees, but A0 for (eg) 7.49
	(their 7.5) × 1.6	M1	$2\pi \times (\text{their } r) \times \frac{91.673}{360}$	12 implies M1
	27	A1	or B2 www	
		[5]		

(i) rc AC = 2.1×1.8	M1	$\frac{103}{260} \times 2\pi \times 2.1$	103° or better
= 3.78 c.a.o. area = their 3.78×5.5 = 20.79 or 20.8 i s w	A1 M1 dep*	dependent on first M1	3.78 must be seen but may be embedded in area formula
	A1		
or 2.1cos1.3(4159)	M2	M1 for $\cos(\pi - 1.8) = \frac{BD}{2.1}$ o.	M2 for BD = $2.1 \cos 76.8675^{\circ}$ or $2.1\sin 13.1324$ rounded to 2 or more sf
more			or M2 for CD = 2.045 r.o.t. to 3 s.f. or better and BD = $\sqrt{(2.1^2 - 2.045^2)}$
= 0.48	A1	allow any answer which rounds to 0.48	
(iii) sector area =	M2	M1 for $\frac{1}{2} \times 2.1^2 \times 1.8$	or equivalent with degrees for first two Ms N.B. $5.5 \times 3.969 = 21.8295$ so allow M2 for 21.8295
triangle area = 0.487 to 0.491	M2		may be sin 1.8 instead of sin $(\pi - 1.8)$
		$\frac{1}{2} \times 2.1 \times \text{their } 0.48 \times \sin(\pi - 1.8)$ or $\frac{1}{2} \times \text{their } 0.48 \times 2.045.$ r.o.t. to 3 s.f. or better	N.B. $5.5 \times \text{area} = 2.6785$ to 2.7005 so allow M2 for a value in this range
24.5	A1	allow any answer which rounds to 24.5	
	= 3.78 c.a.o. area = their 3.78 × 5.5 = 20.79 or 20.8 i.s.w. (ii) BD = 2.1 c $\pi - 1.8$) or 2.1cos1.3(4159) or 2.1sin0.2(292) r.o.t to 1 d.p. or more = 0.48 (iii) sector area = triangle area = 0.487 to 0.491	= 3.78 c.a.o. A1 area = their 3.78×5.5 M1 = 20.79 or 20.8 i.s.w. M1 (ii) BD = 2.1 c $\pi - 1.8$) M2 or 2.1cos1.3(4159) M2 or 2.1sin0.2(292) r.o.t to 1 d.p. or M2 = 0.48 A1 (iii) sector area = M2 triangle area = 0.487 to 0.491 M2	$= 3.78 \text{ c.a.o.}$ $= 3.78 \text{ c.a.o.}$ $area = their 3.78 \times 5.5 = 20.79 \text{ or } 20.8 \text{ i.s.w.}$ $\begin{bmatrix} \text{M1} \\ \text{dep}^* \\ \text{A1} \end{bmatrix}$ $dependent \text{ on first M1}$ $\frac{\text{dependent on first M1}}{\text{dep}^* \\ \text{A1} \end{bmatrix}$ $\begin{bmatrix} (ii) BD = 2.1 \text{ c} & \pi - 1.8) \\ \text{or } 2.1 \cos 1.3(4159) \\ \text{or } 2.1 \sin 0.2(292) \text{ r.o.t to 1 d.p. or} \\ \text{more} \end{bmatrix}$ $= 0.48$ $\begin{bmatrix} \text{A1} \\ \text{allow any answer which rounds to 0.48} \end{bmatrix}$ $\begin{bmatrix} (iii) \text{ sector area} = \\ \text{M2} \end{bmatrix}$ $\begin{bmatrix} \text{M1 for } \frac{1}{2} \times 2.1^2 \times 1.8 \\ \text{M1 for } \frac{1}{2} \times 2.1 \times \text{their } 0.48 \times \sin(\pi - 1.8) \\ \text{or } \frac{1}{2} \times 1.8 \\ \text{or } \frac{1}{2} \times 1.4 \text{ their } 0.48 \times 1.8 \text{ or } \frac{1}{2} \times 1.8 \\ \text{M1 for } \frac{1}{2} \times 2.1 \times 1.8 \text{ their } 0.48 \times 1.8 \text{ or } \frac{1}{2} \times 1.8 \text{ or } \frac$

5	(i) 2.4	2	M1 for 43.2 ÷ 18	
	(ii) 138	2	M1 for their (i) \times π or $\theta = 86\pi$ o.e. or for other rot versions of 137.50	4

Γ	6	210 c.a.o.	2	1 for π rads = 180° soi	2

7	sector area = 28.8 or $\frac{144}{5}$ [cm ²] c.a. area of triangle = $\frac{1}{2} \times 6^2 \times \sin 1.6$ o. their sector – their triangle s.o.i. 10.8 to 10.81 [cm ²]	2 M1 M1 A1	M1 for $\frac{1}{2} \times 6^2 \times 1.6$ must both be areas leading to a positive answer	5
---	---	---------------------	---	---

8	(i) -\sqrt{3}	1	Accept any exact form	
	(ii) $\frac{5}{3}\pi$	2	accept $\frac{5\pi}{3}$, $1^{2/3}\pi$. M1 π rad = 180° used correctly	3

9	$\theta = 0.72$ o.e	2	M1 for $9 = \frac{1}{2} \times 25 \times \theta$ No marks for using degrees unless attempt to convert	
	13.6 [cm]	3	B2 ft for $10 + 5 \times \text{their } \theta$ or for 3.6 found or M1 for $s = 5 \theta$ soi	5