

4	$\begin{aligned} & \text { (i) rc AC }=2.1 \times 1.8 \\ & =3.78 \text { c.a.o. } \\ & \text { area }=\text { their } 3.78 \times 5.5 \\ & =20.79 \text { or } 20.8 \text { i.s.w. } \end{aligned}$	$\begin{array}{\|c} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { dep* } \\ \text { A1 } \end{array}$	$\frac{103}{360} \times 2 \pi \times 2.1$ dependent on first M1	103° or better 3.78 must be seen but may be embedded in area formula
4	(ii) $\mathrm{BD}=2.1 \mathrm{c} \quad \pi-1.8$) or $2.1 \cos 1.3(4159 \ldots .$.) or $2.1 \sin 0.2(292 \ldots)$ r.o.t to 1 d.p. or more $=0.48$	M2 A1	M1 for $\cos (\pi-1.8)=\frac{\mathrm{BD}}{2.1}$ o. allow any answer which rounds to 0.48	M2 for BD $=2.1 \cos 76.8675 \ldots{ }^{\circ}$ or 2.1sin13.1324...rounded to 2 or more sf or M2 for CD $=2.045$... r.o.t. to 3 s.f. or better and $B D=\sqrt{ }\left(2.1^{2}-2.045^{2}\right)$
4	(iii) sector area $=$ triangle area $=0.487$ to 0.491 24.5	M2 M2 A1	M1 for $1 / 2 \times 2.1^{2} \times 1.8$ M1 for $1 / 2 \times 2.1 \times$ their $0.48 \times \sin (\pi-1.8)$ or $1 / 2 \times$ their 0.48×2.045.. r.o.t. to 3 s.f. or better allow any answer which rounds to 24.5	or equivalent with degrees for first two Ms N.B. $5.5 \times 3.969=21.8295$ so allow M2 for 21.8295 may be $\sin 1.8$ instead of $\sin (\pi-1.8)$ N.B. $5.5 \times$ area $=2.6785$ to 2.7005 so allow M2 for a value in this range

5	(i) 2.4 (ii) 138	2	M1 for $43.2 \div 18$	4

6	210 c.a.o.	2	1 for π rads $=180^{\circ}$ soi	2

| 7 | sector area $=28.8$ or $\frac{144}{5}\left[\mathrm{~cm}^{2}\right]$ | 2 | M1 for $1 / 2 \times 6^{2} \times 1.6$ |
| :--- | :--- | :--- | :--- | :--- |
| c.a.
 area of triangle $=1 / 2 \times 6^{2} \times \sin 1.6$
 0.
 their sector - their triangle s.o.i.
 10.8 to $10.81\left[\mathrm{~cm}^{2}\right]$ | M1 | A1 bust both be areas leading to a
 positive answer | 5 |

8	(i) $-\sqrt{3}$	1	Accept any exact form (ii) $\frac{5}{3} \pi$	2		
accept $\frac{5 \pi}{3}, 12 / 3 \pi . \mathrm{M} 1 \pi \mathrm{rad}=180^{\circ}$ used						
correctly					$\quad 3$	3
:---						

$\mathbf{9}$	$\theta=0.72$ o.e	2	M1 for $9=1 / 2 \times 25 \times \theta$ No marks for using degrees unless attempt to convert B2 ft for $10+5 \times$ their θ or for 3.6 found or M1 for $s=5 \theta$ soi	5

