Edexcel Maths C2

Topic Questions from Papers

Trigonometry

5. Solve, for $0 \le x \le 180^{\circ}$, the equation

(a)	$\sin(x+10^\circ) =$	$\frac{\sqrt{3}}{2}$
		2

(4)

(b) $\cos 2x = -0.9$, giving your answers to 1 decimal place.

(4)

$5\sin(\theta+30^\circ)=3.$	
, , ,	(4)

(b) Find all the values of θ , to 1 decimal place, in the interval $0^{\circ} \le$	θ < 360° for which
$\tan^2\theta = 4$.	
	(5)

(Total 9 marks)

Leave
blank

(a) Given that $\sin \theta = 5\cos \theta$, find the value of $\tan \theta$.	
	(1)
(b) Hence, or otherwise, find the values of θ in the interval $0 \le \theta < 360^{\circ}$ for which	1
$\sin \theta = 5\cos \theta$,	
giving your answers to 1 decimal place.	(3)
	(3)

	$2\cos^2 x + 1 = 5\sin x,$	
giving each solution in terr	ms of π .	
88		(6)

9. (a) Sketch, for $0 \le x \le 2\pi$, the graph of $y = \sin\left(x + \frac{\pi}{6}\right)$.

(2)

(b) Write down the exact coordinates of the points where the graph meets the coordinate axes.

(3)

(c) Solve, for $0 \le x \le 2\pi$, the equation

$$\sin\left(x + \frac{\pi}{6}\right) = 0.65,$$

giving your answers in radians to 2 decimal places.

uestion 9 continued	bl
	 _

4.	(a)	Show	that	the	equation
----	-----	------	------	-----	----------

$$3\sin^2\theta - 2\cos^2\theta = 1$$

can be written as

$$5\sin^2\theta=3.$$

(2)

(b) Hence solve, for $0^{\circ} \leqslant \theta < 360^{\circ}$, the equation

$$3\sin^2\theta - 2\cos^2\theta = 1,$$

giving your answers to 1 decimal place.

(7)

Question 4 continued	
	(Total 9 marks)

- **9.** Solve, for $0 \le x < 360^{\circ}$,
 - (a) $\sin(x-20^\circ) = \frac{1}{\sqrt{2}}$

(4)

(b) $\cos 3x = -\frac{1}{2}$

(6)

Question 9 continued		blank
		Q
	(Total 10 marks)	
	TOTAL FOR PAPER: 75 MARKS	1
END		
END		

8. (a) Show that the equation

$$4\sin^2\mathbf{x} + 9\cos\mathbf{x} - 6 = 0$$

can be written as

$$4\cos^2\mathbf{x} - 9\cos\mathbf{x} + 2 = 0.$$

(2)

(b) Hence solve, for $0 \le x < 720^\circ$,

$$4\sin^2 x + 9\cos x - 6 = 0$$

giving your answers to 1 decimal place.

(6)

Question 8 continued		blank
	<u>Q</u>	28
	(Total 8 marks)	

$(1+\tan\theta)(5\sin\theta-2)=0$.		
	()()	(4)
		()

(ii) Solve, for $0 \leqslant \mathbf{x}$ 360	3° , $4\sin \mathbf{x} = 3\tan \mathbf{x}$	blar
	(6)	
		Q
	(Total 10 marks)	

2. (a) Show that the equation

$$5\sin x = 1 + 2\cos^2 x$$

can be written in the form

$$2\sin^2 x + 5\sin x - 3 = 0$$

(2)

(b) Solve, for $0 \le x < 360^{\circ}$,

$$2\sin^2 x + 5\sin x - 3 = 0$$

(4)

Q2

(Total 6 marks)

	Lea bla
5. (a) Given that $5 \sin \theta = 2 \cos \theta$, find the value of $\tan \theta$.	(1)
(b) Solve, for $0 \le x < 360^{\circ}$,	
$5\sin 2\mathbf{x} = 2\cos 2\mathbf{x},$	
giving your answers to 1 decimal place.	
	(5)

7. (a) Show that the equation

$$3\sin^2 x + 7\sin x = \cos^2 x - 4$$

can be written in the form

$$4\sin^2 x + 7\sin x + 3 = 0$$

(2)

(b) Hence solve, for $0 \le x < 360^{\circ}$,

$$3\sin^2 x + 7\sin x = \cos^2 x - 4$$

giving your answers to 1 decimal place where appropriate.

7.	(a)	Solve for $0 \le x < 360^{\circ}$,	giving your answers	in degrees to 1	decimal place,
----	-----	-------------------------------------	---------------------	-----------------	----------------

$$3\sin(x+45^\circ)=2$$

(4)

(b) Find, for
$$0 \le x < 2\pi$$
, all the solutions of

$$2\sin^2 x + 2 = 7\cos x$$

giving your answers in radians.

(6)

estion 7 continued	

9. (i) Find the solutions of the equation $\sin(3x-15^\circ) = \frac{1}{2}$, for which $0 \le x \le 180^\circ$

(6)

(ii)

Figure 4

Figure 4 shows part of the curve with equation

$$y = \sin(ax - b)$$
, where $a > 0$, $0 < b < \pi$

The curve cuts the x-axis at the points P, Q and R as shown.

Given that the coordinates of P, Q and R are $\left(\frac{\pi}{10}, 0\right)$, $\left(\frac{3\pi}{5}, 0\right)$ and $\left(\frac{11\pi}{10}, 0\right)$ respectively, find the values of a and b.

1	- 4	`
1	4	

	Leave blank
Question 9 continued	
	00
//T-4-140 1 \	Q9
(Total 10 marks) TOTAL FOR PAPER: 75 MARKS	
END	

6.	(a)	Show	that	the	equation
----	-----	------	------	-----	----------

$$\tan 2x = 5 \sin 2x$$

can be written in the form

$$(1-5\cos 2x)\sin 2x=0$$

(2)

(b) Hence solve, for
$$0 \le x \le 180^{\circ}$$
,

$$\tan 2x = 5 \sin 2x$$

giving your answers to 1 decimal place where appropriate. You must show clearly how you obtained your answers.

Leave	
hlank	

$\cos(3x - 10^{\circ}) = -0.4$				
٤	giving your answers to 1 decimal place. You should show each step in your working. (7)			

9. (i) Solve, for $0 \le \theta < 180^{\circ}$

$$\sin(2\theta - 30^\circ) + 1 = 0.4$$

giving your answers to 1 decimal place.

(5)

(ii) Find all the values of x, in the interval $0 \le x < 360^{\circ}$, for which

$$9\cos^2 x - 11\cos x + 3\sin^2 x = 0$$

giving your answers to 1 decimal place.

(7)

You must show clearly how you obtained your answers.

estion 9 continued	
	(Total 12 marks)
	(10tai 12 mai KS)

8. (i) Solve, for $-180^{\circ} \le x < 180^{\circ}$,

$$\tan(x - 40^{\circ}) = 1.5$$

giving your answers to 1 decimal place.

(3)

(ii) (a) Show that the equation

$$\sin\theta\tan\theta = 3\cos\theta + 2$$

can be written in the form

$$4\cos^2\theta + 2\cos\theta - 1 = 0$$

(3)

(b) Hence solve, for $0 \le \theta \le 360^{\circ}$,

$$\sin\theta \tan\theta = 3\cos\theta + 2$$

showing each stage of your working.

estion 8 continued	

Core Mathematics C2

Candidates sitting C2 may also require those formulae listed under Core Mathematics C1.

Cosine rule

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Binomial series

$$(a+b)^{n} = a^{n} + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2}b^{2} + \dots + \binom{n}{r} a^{n-r}b^{r} + \dots + b^{n} \quad (n \in \mathbb{N})$$
where $\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{1 \times 2} x^{2} + \dots + \frac{n(n-1)\dots(n-r+1)}{1 \times 2 \times \dots \times r} x^{r} + \dots \quad (|x| < 1, n \in \mathbb{R})$$

Logarithms and exponentials

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Geometric series

$$u_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{\infty} = \frac{a}{1-r}$$
 for $|r| < 1$

Numerical integration

The trapezium rule:
$$\int_{a}^{b} y \, dx \approx \frac{1}{2} h\{(y_0 + y_n) + 2(y_1 + y_2 + ... + y_{n-1})\}$$
, where $h = \frac{b - a}{n}$

Core Mathematics C1

Mensuration

Surface area of sphere = $4\pi r^2$

Area of curved surface of cone = $\pi r \times \text{slant height}$

Arithmetic series

$$u_n = a + (n-1)d$$

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n[2a+(n-1)d]$$