Solution Bank

1

Exercise 7C

1 a

x	y = f(x)	y = f'(x)
x < -9	Positive gradient	Above <i>x</i> -axis
x = -9	Maximum	Cuts <i>x</i> -axis
-9 < x < 0	Negative gradient	Below <i>x</i> -axis
x = 0	Minimum	Cuts <i>x</i> -axis
0 < x < 6	Positive gradient	Above <i>x</i> -axis
<i>x</i> = 6	Maximum	Cuts x-axis
x > 6	Negative gradient	Below x-axis

b

x	y = f(x)	y = f'(x)
All values of <i>x</i>	Positive gradient	Above <i>x</i> -axis with asymptote at $y = 0$

Solution Bank

1 c

x	y = f(x)	y = f'(x)
x < -7	Negative gradient	Below <i>x</i> -axis with asymptote at $x = -7$
-7 < x < 4	Negative gradient	Below x-axis
x = 4	Point of inflection	Touches <i>x</i> -axis
<i>x</i> > 4	Negative gradient	Below x-axis

d

x	y = f(x)	y = f'(x)
x < -2	Negative gradient	Below x-axis
x = -2	Minimum	Cuts x-axis
-2 < x < 0	Positive gradient	Above <i>x</i> -axis
x = 0	Maximum	Cuts x-axis
<i>x</i> > 4	Negative gradient	Below <i>x</i> -axis with asymptote at $y = 0$

Solution Bank

1 e

x	y = f(x)	y = f'(x)
<i>x</i> < 6	Positive gradient	Above <i>x</i> -axis with asymptote at $x = 6$
<i>x</i> > 6	Positive gradient	Above <i>x</i> -axis with asymptote at $x = 6$

f

x	y = f(x)	y = f'(x)
<i>x</i> < 0	Negative gradient	Below <i>x</i> -axis with asymptote at $y = 0$
x > 0	Negative gradient	Below <i>x</i> -axis with asymptote at $y = 0$

Solution Bank

2 **a** $y = f(x) = (x + 1)(x - 4)^2 = x^3 - 7x^2 + 8x + 16$ When y = 0, x = -1 or x = 4

To find stationary points, $\frac{dy}{dx} = 0$:

$$\frac{dy}{dx} = 3x^2 - 14x + 8$$
$$(3x - 2)(x - 4) = 0$$
$$x = \frac{2}{2} \text{ or } x = 4$$

When
$$x = \frac{2}{3}$$
, $y = \left(\frac{2}{3} + 1\right) \left(\frac{2}{3} - 4\right)^2 = \frac{500}{27}$

When x = 4, $y = (4 + 1)(4 - 4)^2 = 0$

So $\left(\frac{2}{3}, \frac{500}{27}\right)$ and (4, 0) are stationary points.

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6x - 14$$

When
$$x = \frac{2}{3}$$
, $\frac{d^2y}{dx^2} = 6\left(\frac{2}{3}\right) - 14 = -10 < 0$

So $\left(\frac{2}{3}, \frac{500}{27}\right)$ is a maximum.

When
$$x = 4$$
, $\frac{d^2y}{dx^2} = 6(4) - 14 = 10 > 0$

So (4, 0) is a minimum.

b

x	y = f(x)	y = f'(x)
$\chi < \frac{2}{3}$	Positive gradient	Above <i>x</i> -axis
$x = \frac{2}{3}$	Maximum	Cuts x-axis
$\frac{2}{3} < x < 4$	Negative gradient	Below x-axis
x = 4	Minimum	Cuts x-axis
<i>x</i> > 4	Positive gradient	Above <i>x</i> -axis

c
$$f(x) = (x+1)(x-4)^2 = x^3 - 7x^2 + 8x + 16$$

 $f'(x) = 3x^2 - 14x + 8$
 $= (3x-2)(x-4)$

Solution Bank

2 **d**
$$f'(x) = 3x^2 - 14x + 8$$

 $(3x - 2)(x - 4) = 0$
 $x = \frac{2}{3}$ or $x = 4$

When
$$x = 0$$
, $f'(x) = 8$

The points where the gradient function cuts the axes are $(\frac{2}{3}, 0)$, (4, 0) and (0, 8).