Solution Bank

Chapter review 6

1 a 237° is in the third quadrant, so cos 237° is –ve.

The angle made with the horizontal is 57°.

So
$$\cos 237^{\circ} = -\cos 57^{\circ}$$

b 312° is in the fourth quadrant so sin 312° is –ve.

The angle to the horizontal is 48°.

So
$$\sin 312^\circ = -\sin 48^\circ$$

c 190° is in the third quadrant so tan 190° is +ve.

The angle to the horizontal is 10°.

So
$$\tan 190^{\circ} = + \tan 10^{\circ}$$

1 d $\left(\frac{11\pi}{6}\right)$ is in the fourth quadrant, so $\cos\left(\frac{11\pi}{6}\right)$ is +ve.

The angle made with the horizontal is $\frac{\pi}{6}$.

So
$$\cos\left(\frac{11\pi}{6}\right) = \cos\left(\frac{\pi}{6}\right)$$

e $\left(\frac{7\pi}{6}\right)$ is in the third quadrant, so $\sin\left(\frac{7\pi}{6}\right)$ is -ve.

The angle made with the horizontal is $\frac{\pi}{6}$.

1

So
$$\sin\left(\frac{7\pi}{6}\right) = -\sin\left(\frac{\pi}{6}\right)$$

Solution Bank

1 **f** $\left(\frac{11\pi}{4}\right)$ is in the second quadrant, so $\tan\left(\frac{11\pi}{4}\right)$ is -ve.

The angle made with the horizontal is $\frac{\pi}{4}$.

So
$$\tan\left(\frac{11\pi}{4}\right) = -\tan\left(\frac{\pi}{4}\right)$$

2 **a**
$$\cos 270^{\circ} = 0$$

$$\mathbf{b} \quad \sin 225^\circ = \sin \left(180 + 45\right)^\circ$$
$$= -\sin 45^\circ$$
$$= -\frac{\sqrt{2}}{2}$$

c
$$\tan 240^\circ = \tan (180 + 60)^\circ$$

= $+ \tan 60^\circ$ (third quadrant)
So $\tan 240^\circ = +\sqrt{3}$

d
$$\cos \pi = \cos 0$$
 (third quadrant)
= -1

e
$$\tan\left(\frac{5\pi}{4}\right) = \tan\left(\pi + \frac{\pi}{4}\right)$$

 $= \tan\left(\frac{\pi}{4}\right)$ (third quadrant)
So $\tan\left(\frac{5\pi}{4}\right) = \tan\left(\frac{\pi}{4}\right) = 1$

2 **f**
$$\sin\left(\frac{3\pi}{2}\right) = -\sin\left(\pi + \frac{\pi}{2}\right)$$

= $-\sin\left(\frac{\pi}{2}\right)$ (third quadrant)
So $\sin\left(\frac{3\pi}{2}\right) = -\sin\left(\frac{\pi}{2}\right) = -1$

3 Using
$$\sin^2 A + \cos^2 A = 1$$

 $\sin^2 A + \left(-\sqrt{\frac{7}{11}}\right)^2 = 1$
 $\sin^2 A = 1 - \frac{7}{11}$
 $= \frac{4}{11}$
 $\sin A = \pm \frac{2}{\sqrt{11}}$

But A is in the second quadrant (obtuse),

so
$$\sin A$$
 is + ve.

So
$$\sin A = +\frac{2}{\sqrt{11}}$$

Using
$$\tan A = \frac{\sin A}{\cos A}$$

$$\tan A = \frac{\left(\frac{2}{\sqrt{11}}\right)}{-\sqrt{7}/11}$$

$$= -\frac{2}{\sqrt{11}} \times \frac{\sqrt{11}}{\sqrt{7}}$$

$$= -\frac{2}{\sqrt{7}}$$

$$= -\frac{2\sqrt{7}}{7}$$

(rationalising the denominator)

Solution Bank

Draw a right-angled triangle with an angle of ϕ , where $\phi = +\frac{\sqrt{21}}{2}$.

Use Pythagoras' theorem to find the hypotenuse.

$$x^{2} = 2^{2} + \left(\sqrt{21}\right)^{2}$$
$$= 4 + 21$$
$$= 25$$

So
$$x = 5$$

$$\mathbf{a} \quad \sin \phi = \frac{\sqrt{21}}{5}$$

As B is reflex and $\tan B$ is +ve, B is in the third quadrant.

So
$$\sin B = -\sin \phi$$
$$= -\frac{\sqrt{21}}{5}$$

b From the diagram $\cos \phi = \frac{2}{5}$. *B* is in the third quadrant. So $\cos B = -\cos \phi$ $= -\frac{2}{5}$

5 a Factorise
$$\cos^4 \theta - \sin^4 \theta$$
.
(This is the difference of two squares.
 $\cos^4 \theta - \sin^4 \theta$
 $= (\cos^2 \theta + \sin^2 \theta)(\cos^2 \theta - \sin^2 \theta)$
 $= (1)(\cos^2 \theta - \sin^2 \theta)$
 $(a \cos^2 \theta + \sin^2 \theta) = 1)$
So $\cos^4 \theta - \sin^4 \theta = \cos^2 \theta - \sin^2 \theta$

5 **b** Factorise
$$\sin^2 3\theta - \sin^2 3\theta \cos^2 3\theta$$
.
 $\sin^2 3\theta - \sin^2 3\theta \cos^2 3\theta$
 $= \sin^2 3\theta (1 - \cos^2 3\theta)$
(use $\sin^2 3\theta + \cos^2 3\theta \equiv 1$)

 $\sin^2 3\theta - \sin^2 3\theta \cos^2 3\theta = \sin^2 3\theta (\sin^2 3\theta)$

 $=\sin^4 3\theta$

$$\mathbf{c} \quad \cos^4 \theta + 2\sin^2 \theta \cos^2 \theta + \sin^4 \theta$$
$$= \left(\cos^2 \theta + \sin^2 \theta\right)^2$$
$$= 1 \quad (\text{since } \sin^2 \theta + \cos^2 \theta = 1)$$

6 a
$$2(\sin x + 2\cos x) = \sin x + 5\cos x$$

 $\Rightarrow 2\sin x + 4\cos x = \sin x + 5\cos x$
 $\Rightarrow 2\sin x - \sin x = 5\cos x - 4\cos x$
 $\Rightarrow \sin x = \cos x$
(divide both sides by $\cos x$)
So $\tan x = 1$

b
$$\sin x \cos y + 3\cos x \sin y$$

 $= 2\sin x \sin y - 4\cos x \cos y$
 $\Rightarrow \frac{\sin x \cos y}{\cos x \cos y} + \frac{3\cos x \sin y}{\cos x \cos y}$
 $= \frac{2\sin x \sin y}{\cos x \cos y} - \frac{4\cos x \cos y}{\cos x \cos y}$
 $\Rightarrow \tan x + 3\tan y = 2\tan x \tan y - 4$
 $\Rightarrow 2\tan x \tan y - 3\tan y = 4 + \tan x$
 $\Rightarrow \tan y (2\tan x - 3) = 4 + \tan x$
So $\tan y = \frac{4 + \tan x}{2\tan x - 3}$

7 **a** LHS =
$$(1 + 2\sin\theta + \sin^2\theta) + \cos^2\theta$$

= $1 + 2\sin\theta + 1$ since $\sin^2\theta + \cos^2\theta = 1$
= $2 + 2\sin\theta$
= $2(1 + \sin\theta)$
= RHS

Solution Bank

7 **b** LHS =
$$\cos^4 \theta + \sin^2 \theta$$

= $(\cos^2 \theta)^2 + \sin^2 \theta$
= $(1 - \sin^2 \theta)^2 + \sin^2 \theta$
= $1 - 2\sin^2 \theta + \sin^4 \theta + \sin^2 \theta$
= $(1 - \sin^2 \theta) + \sin^4 \theta$
= $\cos^2 \theta + \sin^4 \theta$
(using $\sin^2 \theta + \cos^2 \theta = 1$)
= RHS

8 **a**
$$\sin \theta = \frac{3}{2}$$
 has no solutions as $-1 \le \sin \theta \le 1$.

b
$$\sin \theta = -\cos \theta$$

 $\Rightarrow \tan \theta = -1$
Look at the graph of $y = \tan \theta$ in the interval $0 \le \theta \le 360^{\circ}$. There are two solutions.

- c The minimum value of $2\sin\theta$ is -2. The minimum value of $3\cos\theta$ is -3. Each minimum value is for a different θ . So the minimum value of $2\sin\theta + 3\cos\theta$ is always greater than -5. There are no solutions of $2\sin\theta + 3\cos\theta + 6 = 0$ as the LHS can never be zero.
- **d** Solving $\tan \theta + \frac{1}{\tan \theta} = 0$ is equivalent to solving $\tan^2 \theta = -1$, which has no solutions. So there are no solutions.

9 a
$$4xy - y^2 + 4x - y \equiv y(4x - y) + (4x - y)$$

= $(4x - y)(y + 1)$

b
$$(4\sin\theta - \cos\theta)(\cos\theta + 1) = 0, \ 0 \le \theta \le 2\pi$$

 $\sin\theta = \frac{1}{4}\cos\theta \text{ and } \cos\theta = -1$
When $\sin\theta = \frac{1}{4}\cos\theta$

$$\frac{\sin \theta}{\cos \theta} = \frac{1}{4}$$
$$\tan \theta = \frac{1}{4}$$

$$\theta = 0.245$$
 and $\theta = \pi + 0.245 = 3.39$
When $\cos \theta = -1$, $\theta = \pi$

10 a As
$$\sin(90-\theta)^{\circ} \equiv \cos \theta^{\circ}$$
,
 $\sin(90-3\theta)^{\circ} \equiv \cos 3\theta^{\circ}$
So $4\cos 3\theta^{\circ} - \sin(90-3\theta)^{\circ}$
 $= 4\cos 3\theta^{\circ} - \cos 3\theta$
 $= 3\cos 3\theta^{\circ}$

Solution Bank

? Pearson

10 b Using **a**, $4\cos 3\theta^{\circ} - \sin(90 - 3\theta)^{\circ} = 2$ is equivalent to $3\cos 3\theta^{\circ} = 2$

so
$$\cos 3\theta^{\circ} = \frac{2}{3}$$

Let
$$X = 3\theta$$
 and solve $\cos X^{\circ} = \frac{2}{3}$

in the interval $0^{\circ} \le X \le 1080^{\circ}$.

The calculator solution is $X = 48.19^{\circ}$

As $\cos X^{\circ}$ is + ve, X is in the

first and fourth quadrants.

Read off all solutions in the interval $0^{\circ} \le X \le 1080^{\circ}$.

 $X = 48.19^{\circ}, 311.81^{\circ}, 408.19^{\circ}, 671.81^{\circ},$

 $768.19^{\circ}, 1031.81^{\circ}$

So
$$\theta = \frac{X}{3} = 16.1^{\circ}, 104, 136^{\circ}, 224^{\circ}, 256^{\circ},$$

 $344^{\circ}(3 \text{ s.f.})$

11 a $2\sin 2\theta = \cos 2\theta$

$$\Rightarrow \frac{2\sin 2\theta}{\cos 2\theta} = 1$$

$$\Rightarrow 2 \tan 2\theta = 1 \text{ since } \tan 2\theta = \frac{\sin 2\theta}{\cos 2\theta}$$

So
$$\tan 2\theta = 0.5$$

The calculator solution for tan⁻¹ 0.5 is 26.57°

As $\tan X$ is +ve, X is in the first and third quadrants.

Read off solutions for *X* in the interval $0^{\circ} \le X < 720^{\circ}$.

$$X = 26.57^{\circ}, 206.57^{\circ}, 386.57^{\circ}, 566.57^{\circ}$$

So
$$\theta = \frac{X}{2}$$

= 13.3°,103.3°,193.3°,283.3°(1 d.p.)

12 a
$$\cos(\theta + 75)^{\circ} = 0.5$$

Solve $\cos X^{\circ} = 0.5$, where $X = \theta + 75$, $75^{\circ} \le X < 435^{\circ}$.

Your calculator solution for $X = 60^{\circ}$.

As $\cos X$ is +ve, X is in the first and fourth quadrants.

Read off all solutions in the interval $75^{\circ} \le X < 435^{\circ}$.

$$X = 300^{\circ}, 420^{\circ}$$

$$\theta + 75^{\circ} = 300^{\circ}, 420^{\circ}$$

So
$$\theta = 225^{\circ}, 345^{\circ}$$

Solution Bank

Pearson

12 b $\sin 2\theta^{\circ} = 0.7$ in the interval $0^{\circ} \le \theta < 360^{\circ}$

Solve
$$\sin X^{\circ} = 0.7$$
, where $X = 2\theta$, $0^{\circ} \le X < 720^{\circ}$.

As $\sin X$ is +ve, X is in the first and second quadrants.

Read off solutions in the interval $0^{\circ} \le X < 720^{\circ}$.

$$X = 44.4^{\circ}, 135.6^{\circ}, 404.4^{\circ}, 495.6^{\circ}$$

$$=2\theta$$

So
$$\theta = \frac{X}{2}$$

=
$$22.2^{\circ}$$
, 67.8° , 202.2° , 247.8° (1 d.p.)

Multiply both sides of the equation by $(1-\cos 2x)$, provided $\cos 2x \ne 1$.

Note: In the interval given, $\cos 2x$ is never equal to 1.

So
$$\cos 2x + 0.5 = 2 - 2\cos 2x$$

$$\Rightarrow 3\cos 2x = \frac{3}{2}$$

So
$$\cos 2x = \frac{1}{2}$$

Solve
$$\cos X = \frac{1}{2}$$
 where $X = 2x$,

$$0^{\circ} < X < 540^{\circ}$$
.

The calculator solution is 60°.

As $\cos X$ is + ve, X is in the first and fourth quadrants.

Read off solutions for *X* in the interval $0^{\circ} < X < 540^{\circ}$.

$$X = 60^{\circ}, 300^{\circ}, 420^{\circ}$$

So
$$x = \frac{X}{2}$$

= 30°, 150°, 210°

Solution Bank

14
$$2\cos^2 \theta - \cos \theta - 1 = \sin^2 \theta$$
, $0 < \theta < 2\pi$
 $2\cos^2 \theta - \cos \theta - 1 = 1 - \cos^2 \theta$
 $3\cos^2 \theta - \cos \theta - 2 = 0$

$$(3\cos\theta + 2)(\cos\theta - 1) = 0$$

$$\cos \theta = -\frac{2}{3}$$
 and $\cos \theta = 1$

when
$$\cos \theta = -\frac{2}{3}$$

$$\theta = 2.30$$
 and $\theta = 2\pi - 2.30 = 3.98$

When $\cos \theta = 1$

 $\theta = 0$ and $\theta = 2\pi$, but not within the interval so reject.

Only solutions are $\theta = 2.30$ or $\theta = 3.98$

15 a The student found additional solutions after dividing by three rather than before. The students has not applied the full interval for the solutions.

15 b Let
$$X = 3x$$

 $\sin X = \frac{1}{2}$
As $X = 3x$, then as $-360^{\circ} \le x \le 360^{\circ}$
So $3 \times -360^{\circ} \le X \le 3 \times 360^{\circ}$
So the interval for X is $-1080^{\circ} \le X \le 1080^{\circ}$
 $X = 30^{\circ}, 150^{\circ}, 390^{\circ}, 510^{\circ}, 750^{\circ}, 870^{\circ}, -210^{\circ}, -330^{\circ}, -570^{\circ}, -690^{\circ}, -930^{\circ}, -1050^{\circ}$
i.e. $3x = -1050^{\circ}, -930^{\circ}, -690^{\circ}, -570^{\circ}, -330^{\circ}, -210^{\circ}, 30^{\circ}, 150^{\circ}, 390^{\circ}, 510^{\circ}, 750^{\circ}, 870^{\circ}$
So $x = -350^{\circ}, -310^{\circ}, -230^{\circ}, -190^{\circ}, -110^{\circ}, -70^{\circ}, 10^{\circ}, 50^{\circ}, 130^{\circ}, 170^{\circ}, 250^{\circ}, 290^{\circ}$

16 a

b The graphs intersect at two places so there are two solutions to the equation in the given range.

c
$$3\sin x = 2\cos x$$

$$\frac{\sin x}{\cos x} = \frac{2}{3}$$

$$\tan x = \frac{2}{3}$$

$$x = 33.7^{\circ}, 213.7^{\circ}$$

- 17 a Using the cosine rule $\cos B = \frac{a^2 + c^2 - b^2}{2ac}$ $\cos B = \frac{6^2 + 11^2 - 7^2}{2 \times 6 \times 11}$ $\cos B = \frac{36 + 121 - 49}{132}$ $\cos B = \frac{9}{11}$
- 17 b Using Pythagoras' theorem $\sqrt{11^2 - 9^2} = \sqrt{40}$ $\sin B = \frac{\sqrt{40}}{11} = \frac{2\sqrt{10}}{11}$

Solution Bank

18 a Using the sine rule

$$\frac{\sin Q}{q} = \frac{\sin P}{p}$$

$$\frac{\sin Q}{6} = \frac{\sin 45^{\circ}}{5}$$

$$\sin Q = \frac{6\left(\sqrt{2}/2\right)}{5}$$

$$\sin Q = \frac{3\sqrt{2}}{5}$$

b Using Pythagoras' theorem or identity

$$\cos^2 x + \sin^2 x = 1$$

 $\cos Q = \frac{\sqrt{7}}{5}$ for the acute angle

As Q is obtuse, it is in the second quadrant where $\cos Q$ is negative.

So
$$\cos Q = -\frac{\sqrt{7}}{5}$$

19 a $3\sin^2 x - \cos^2 x = 2$ can be written as

$$3\sin^2 x - (1 - \sin^2 x) = 2$$
which reduces to
$$4\sin^2 x = 3$$

19 b
$$4\sin^2 x = 3, -\pi \le x \le \pi$$

$$\sin^2 x = \frac{3}{4}$$

$$\sin x = \pm \frac{\sqrt{3}}{2}$$

$$x = -\pi + \frac{\pi}{3} = -\frac{2\pi}{3}$$
, $x = -\frac{\pi}{3}$, $x = \frac{\pi}{3}$ and

$$x = \frac{2\pi}{3}$$

3cos²
$$x + 1 = 4\sin x$$
 can be written as
 $3(1 - \sin^2 x) + 1 = 4\sin x$
which can be reduced to
 $3\sin^2 x + 4\sin x - 4 = 0$

$$(3\sin x - 2)(\sin x + 2) = 0$$

 $\sin x = \frac{2}{3} \text{ or } \sin x = -2$

 $\sin x = -2$ has no solutions.

So
$$x = 41.8^{\circ}$$
, 138.2° , -221.8° , -318.2°

So the solutions are

$$x = -318.2^{\circ}, -221.8^{\circ}, 41.8^{\circ}, 138.2^{\circ}$$

Challenge

$$\tan^4 x - 3 \tan^2 x + 2 = 0$$

$$(\tan^2 x - 2)(\tan^2 x - 1) = 0$$

$$\tan^2 x = 2 \text{ or } \tan^2 x = 1$$

$$\tan x = \pm 1 \text{ or } \pm \sqrt{2}$$

$$x = 45^{\circ}, 225^{\circ}, -45^{\circ}, 135^{\circ}, 315^{\circ}, 54.7^{\circ}, 234.7^{\circ},$$

So the solutions are

$$x = 45^{\circ}, 54.7^{\circ}, 125.3^{\circ}, 135^{\circ}, 225^{\circ}, 234.7^{\circ},$$

305.3°, 315°