Pure Mathematics 2

Solution Bank

Exercise 3E

1 a
$$\log_7 120 = \frac{\log_{10} 120}{\log_{10} 7}$$

= 2.460 (3 d.p.)

b
$$\log_3 45 = \frac{\log_{10} 45}{\log_{10} 3}$$

= 3.465 (3 d.p.)

$$\mathbf{c} \quad \log_2 19 = \frac{\log_{10} 19}{\log_{10} 2}$$
$$= 4.248 \text{ (3 d.p.)}$$

d
$$\log_{11} 3 = \frac{\log_{10} 3}{\log_{10} 11}$$

= 0.458 (3 d.p.)

2 a
$$8^x = 14$$

Take the logarithm of both sides and simplify.

$$x \log 8 = \log 14$$

$$x = \frac{\log 14}{\log 8}$$

= 1.27 (3 s.f.)

b
$$9^x = 99$$

Take the logarithm of both sides and simplify.

$$x\log 9 = \log 99$$

$$x = \frac{\log 99}{\log 9}$$

= 2.09 (3 s.f.)

$$c 12^x = 6$$

Take the logarithm of both sides and simplify.

$$x \log 12 = \log 6$$

$$x = \frac{\log 6}{\log 12}$$

= 0.721 (3 s.f.)

3 **a**
$$\log_2 x = 8 + 9 \log_x 2$$

Use the change of base rule.

$$\left(\log_a b = \frac{1}{\log_b a}\right)$$

$$\log_2 x = 8 + \frac{9}{\log_2 x}$$

Let
$$\log_2 x = y$$

$$y = 8 + \frac{9}{v}$$

$$v^2 = 8v + 9$$

$$v^2 - 8v - 9 = 0$$

$$(y+1)(y-9)=0$$

$$y = -1 \text{ or } y = 9$$

When
$$y = -1$$

$$\log_2 x = -1$$

$$x = 2^{-1}$$

$$=\frac{1}{2}$$

When
$$y = 9$$

$$\log_2 x = 9$$

$$x = 2^9$$

$$=512$$

Pure Mathematics 2

Solution Bank

3 b $\log_4 x + 2\log_x 4 + 3 = 0$

Use the change of base rule.

$$\left(\log_a b = \frac{1}{\log_b a}\right)$$

$$\log_4 x + \frac{2}{\log_4 x} + 3 = 0$$

Let
$$\log_4 x = y$$

$$y + \frac{2}{y} + 3 = 0$$

$$v^2 + 3v + 2 = 0$$

$$(y+1)(y+2) = 0$$

$$y = -1$$
 or $y - 2$

When
$$y = -1$$

$$\log_4 x = -1$$

$$x = 4^{-1}$$

$$=\frac{1}{4}$$

When
$$y = -2$$

$$\log_4 x = -2$$

$$x = 4^{-2}$$

$$=\frac{1}{16}$$

3 c $\log_2 x + \log_4 x = 2$

Use the change of base rule

$$\left(\log_a x = \frac{\log_b x}{\log_b a}\right)$$

$$\log_4 x = \frac{\log_2 x}{\log_2 4}$$

So
$$\log_2 x + \frac{\log_2 x}{\log_2 4} = 2$$

and since $\log_2 4 = 2$

$$\log_2 x + \frac{1}{2}\log_2 x = 2$$

$$\frac{3}{2}\log_2 x = 2$$

$$\log_2 x = \frac{4}{3}$$

$$x = 2^{\frac{4}{3}}$$

= 2.52 (3 s.f.)