Mark Scheme 4752 June 2005

Section A

1	$1+\frac{3}{2}x^{\frac{1}{2}}$	1+3	B2 for $kx^{\frac{1}{2}}$, or M1 for $x^{\frac{3}{2}}$ seen before	
	-		differentiation or B1 ft their $x^{\frac{3}{2}}$ correctly differentiated	4
2	1170	4	B1 for $a = 11$ and B1 for $d = 5$ or 20^{th}	
			term = 106 and	
			M1 for 20/2[their (a) + their(106)] or	
			$20/2[2\text{their (a)}+(20-1)\times\text{their(d)}]$	
			OR M1 for 6×20 and M2 for	4
			$5\left(\frac{20}{2}[20+1]\right)$ o.e.	
3	$\pm \sqrt{13/4}$	3	B2 for (-) $\sqrt{13/4}$ or $\pm \sqrt{\frac{13}{16}}$	3
			or M1 for $\sqrt{13}$ or $\sin^2\theta + \cos^2\theta = 1$ used	
4	$x + x^{-1}$ soi	B1	1 2	
	$y' = 1 - 1/x^2$	BI B1	$1 - x^2$ is acceptable Or solving $1 - x^2 = 0$ to obtain $x = 1$	
	subs $x = 1$ to get $y = 0$ $y'' - 2r^3$ attempted	M1ft	or checking v' before and after $x = 1$	
	Stating $v'' > 0$ so min cao	A1	Valid conclusion	
			First quadrant sketch scores B2	5
5	(i) 1	1		
	(ii) -2	2	M1 for $1/9=3^{-2}$ or $\log(1) - \log(3^2)$	
	(iii) 6log <i>x</i>	2	base not requd; M1 for $5 \log x$ or $\log(x^6)$	5
6	Correct curve thro' y axis	G1	y, y' & y'' all positive	
	(0, 1) indicated on sketch or table	G1	independent	
	5.64	3	B2 for other versions of 5.64(3) or B1	
			for other ans 5.6 to 5.7	
			or M1 for $x \log 2 = \log 50$ and M1 for	_
7	$-2/r^2$ or	5	$x = \log 50 \div \log 2$	2
'	y = 7 - 3/x oe	5	b) for $(y = c - 5/x + c B)$ for each of k/x^2 $k = -6/2$ and $+c$ and M1 for	
			substituting (1, 4) in their attempted	5
			integration with $+ c$, the constant of	
			integration	
8	(i) 66° or 66.4 or 66.5	B1 B1	Allow 1.16 or 73.8	
	295.58 to 5 of more si cao	DI	outside the range	
	(ii) stretch (one way)	1		
	parallel to the x-axis $af 0.5$		Horizontal, from y axis, in x axis, oe	5
	<u>SI U.3</u>	1		36

Section B

4752

9	i	$3x^2 - 20x + 12$	2	B1 if one error "+c" is an error	
,	-	$3\lambda = 20\lambda + 12$	-		2
	ii	y - 64 = -16(x - 2) o.e.	4	M1 for subst $x = 2$ in their y'	
		eg $y = -16x + 96$		A1 for $y' = -16$ and B1 for $y = 64$	4
	iii	Factorising $f(x) \equiv (x+2)(x-6)^2$	B3	or B1 for <i>f</i> (-2) = -8-40-24+72 =0 and	
				B1 for $f'(6) = 0$ and	3
		OR Expanding $(x+2)(x-6)^2$	M2	B1dep for $f(6)=0$	
			EI		
			DA		
	iv	$\frac{x^4}{10x^3} - \frac{10x^3}{10x^3} + 6x^2 + 72x$	B 2	-1 for each error	
		4 3	N/1	Must have integrated $f(x)$	
		value at $(x = 6)$ ~ value at $(x = -2)$		Nust have integrated $f(x)$	
		341(.3) cao	ΔΙ		4
					'
10	i	AB = 7.8(0), 7.798 to 7.799 seen	2	M1 for correct use of sine rule	
				For long methods M1A1 for art 7.8	
		area = 52.2 to 52.3	2	M1 for $[2\times][0.5 \times]$ their AB \times 11.4 \times	4
				sin 36°	
	ii	$\tan 0.91 = ST/12.6$	M 1		
		$ST = 12.6 \times tan 0.91$ and	E1	Accept 16.2 if ST is explicit but for	
		completion (16.208)		long methods with pa check that their	
			N/1	explicit expression = 16.2	
		area OSIR = $[2 \times][0.5 \times]12.6 \times$	1011		
		then (10.2) 110 204	M1	oe using degrees	
		-144 47	Al	soi by correct ans Accept 144, 144.5	
		$I_{144.47}$ = 59.6 to 60.0	A1		
		$\operatorname{arc} = 12.6 \times 1.82 [=22.9]$	M1	oe using degrees	
		perimeter = 55.3 to 55.4	A1		8
			1		
11	i	81	1		1
		$(1_{w})2^{n-1}$	1		1
	11	(1x)5	1		1
	iii	(GP with) $a = 1$ and $r = 3$	M1	or M1 for = $1+3+9+$ $+3^{n-1}$	
		clear correct use GP sum formula	M1	1 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 +	2
					_
	iv	(A) 6 www	2	M1 for $364 = (3^n - 1)/2$	
		(B) 243	1		3
	V	their (ii) > 900	M1ft	-1 once for = or < seen: condone	
		$(y-1)\log 3 > \log 900$	M1ft	wrong letter / missing brackets / no	
		$y - 1 > \log 900 \div \log 3$	MI D1	base	4
		y = 8 cao	RI		4