### Mark Scheme 4752 June 2005

|   |                                     | 1.         |                                                                           |         |
|---|-------------------------------------|------------|---------------------------------------------------------------------------|---------|
| 1 | $1+\frac{3}{2}x^{\frac{1}{2}}$      | 1+3        | B2 for $kx^{\frac{1}{2}}$ , or M1 for $x^{\frac{3}{2}}$ seen before       | 4       |
|   |                                     |            | differentiation or B1 ft their $x^{\frac{3}{2}}$ correctly differentiated | +       |
| 2 | 1170                                | 4          | B1 for $a = 11$ and B1 for $d = 5$ or $20^{\text{th}}$                    |         |
|   |                                     |            | term = $106$ and                                                          |         |
|   |                                     |            | M1 for 20/2[their (a) + their(106)] or                                    |         |
|   |                                     |            | 20/2[2their (a)+ (20-1)×their(d)]                                         |         |
|   |                                     |            | $\underline{OR}$ M1 for 6×20 and M2 for                                   | 4       |
|   |                                     |            | $5\left(\frac{20}{2}[20+1]\right)$ o.e.                                   |         |
| 3 | $\pm\sqrt{13/4}$                    | 3          | B2 for (-) $\sqrt{13/4}$ or $\pm \sqrt{\frac{13}{16}}$                    | 3       |
|   |                                     |            | or M1 for $\sqrt{13}$ or $\sin^2\theta + \cos^2\theta = 1$ used           |         |
| 4 | $x + x^{-1}$ soi                    | B1         |                                                                           |         |
|   | $y' = 1 - 1/x^2$                    | B1         | $1 - x^2$ is acceptable                                                   |         |
|   | subs $x = 1$ to get $y' = 0$        | B1<br>M1ft | Or solving $1 - x^2 = 0$ to obtain $x = 1$                                |         |
|   | $y''=2x^3$ attempted                | A1         | or checking y' before and after $x = 1$<br>Valid conclusion               |         |
|   | Stating $y'' > 0$ so min cao        | 111        | First quadrant sketch scores B2                                           | 5       |
|   |                                     |            |                                                                           |         |
| 5 | (i) 1                               | 1          |                                                                           |         |
|   | (ii) –2                             | 2          | M1 for $1/9=3^{-2}$ or $\log(1) - \log(3^2)$                              |         |
|   | (iii) 6log <i>x</i>                 | 2          | base not requd; M1 for $5 \log x$ or $\log(x^6)$                          | 5       |
| 6 | Correct curve thro' y axis          | G1         | y, y' & y'' all positive                                                  |         |
|   | (0, 1) indicated on sketch or table | G1         | independent                                                               |         |
|   | 5.64                                | 3          | B2 for other versions of $5.64(2)$ or B1                                  |         |
|   |                                     | 5          | B2 for other versions of 5.64(3) or B1 for other ans 5.6 to 5.7           |         |
|   |                                     |            | or M1 for $x \log 2 = \log 50$ and M1 for                                 |         |
|   |                                     |            | $x = \log 50 \div \log 2$                                                 | 5       |
| 7 | $y = 7 - 3/x^2 \text{ oe}$          | 5          | B3 for $(y =) -3/x^2 + c$ [B1 for each of                                 |         |
|   |                                     |            | $k/x^2$ , $k = -6/2$ and $+c$ ] and M1 for                                |         |
|   |                                     |            | substituting $(1, 4)$ in their attempted                                  | 5       |
|   |                                     |            | integration with $+ c$ , the constant of integration                      |         |
| 8 | (i) 66° or 66.4 or 66.5             | B1         | Allow 1.16 or 73.8                                                        |         |
|   | 293.58 to 3 or more sf cao          | B1         | Lost for extras in range. Ignore extras                                   |         |
|   |                                     |            | outside the range                                                         |         |
|   | (ii) stretch (one way)              | 1          |                                                                           |         |
|   | parallel to the <i>x</i> -axis      | 1          | Horizontal, from y axis, in <i>x</i> axis, oe                             | 5       |
|   | sf 0.5                              | 1          |                                                                           | 5<br>36 |
|   |                                     |            |                                                                           | 30      |

#### **Section B**

| •  | •   |                                                                   | 0                  | D1:0 4. 21                                                                       | <u>т 1</u> |
|----|-----|-------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------|------------|
| 9  | i   | $3x^2 - 20x + 12$                                                 | 2                  | B1 if one error "+c" is an error                                                 | 2          |
|    | ii  | y - 64 = -16(x - 2) o.e.<br>eg $y = -16x + 96$                    | 4                  | M1 for subst $x = 2$ in their y'<br>A1 for $y' = -16$ and B1 for $y = 64$        | 4          |
|    | iii | Factorising $f(x) \equiv (x+2)(x-6)^2$                            | В3                 | or B1 for $f(-2) = -8-40-24+72 = 0$ and<br>B1 for $f'(6) = 0$ and                | 3          |
|    |     | OR Expanding $(x+2)(x-6)^2$                                       | M2<br>E1           | B1dep for $f(6)=0$                                                               |            |
|    | iv  | $\frac{x^4}{4} - \frac{10x^3}{3} + 6x^2 + 72x$                    | B2                 | -1 for each error                                                                |            |
|    |     | 4 3<br>value at $(x = 6)$ ~ value at $(x = -2)$<br>341(.3) cao    | M1<br>A1           | Must have integrated $f(x)$                                                      |            |
|    |     |                                                                   |                    |                                                                                  | 4          |
| 10 | i   | AB = 7.8(0), 7.798 to 7.799 seen                                  | 2                  | M1 for correct use of sine rule<br>For long methods M1A1 for art 7.8             |            |
|    |     | area = $52.2$ to $52.3$                                           | 2                  | M1 for $[2\times][0.5 \times]$ their AB $\times$ 11.4 $\times$ sin 36°           | 4          |
|    | ii  | $\tan 0.91 = ST/12.6$                                             | M1                 |                                                                                  |            |
|    |     | $ST = 12.6 \times tan 0.91 and completion (16.208)$               | E1                 | Accept 16.2 if ST is explicit but for<br>long methods with pa check that their   |            |
|    |     | area OSTR = $[2 \times][0.5 \times]12.6 \times$                   | M1                 | explicit expression = 16.2                                                       |            |
|    |     | their (16.2) nb 204                                               | M1                 | oe using degrees                                                                 |            |
|    |     | area of sector = $0.5 \times 12.6^2 \times 1.82$<br>=144.47       | A1                 | soi by correct ans Accept 144, 144.5                                             |            |
|    |     | Logo = 59.6  to  60.0                                             | A1                 |                                                                                  |            |
|    |     | arc = 12.6 × 1.82 [=22.9]<br>perimeter = 55.3 to 55.4             | M1<br>A1           | oe using degrees                                                                 | 8          |
| 11 | i   | 81                                                                | 1                  |                                                                                  | 1          |
|    | ii  | $(1x)3^{n-1}$                                                     | 1                  |                                                                                  | 1          |
|    | iii | (GP with) $a = 1$ and $r = 3$<br>clear correct use GP sum formula | M1<br>M1           | or M1 for = $1+3+9+ \dots +3^{n-1}$                                              | 2          |
|    | iv  | (A) 6 www<br>(B) 243                                              | 2<br>1             | M1 for $364 = (3^n - 1)/2$                                                       | 3          |
|    | v   | their (ii) > 900<br>(y - 1)log 3 > log 900                        | M1ft<br>M1ft<br>M1 | -1 once for = or < seen: condone<br>wrong letter / missing brackets / no<br>base |            |
|    |     | $y - 1 > \log 900 \div \log 3$<br>$y = 8 \operatorname{cao}$      | B1                 |                                                                                  | 4          |
|    | •   | • •                                                               | -                  | •                                                                                |            |

4752

Mark Scheme 4752 January 2006

| 1        | 7/9 or 140/180 o.e.                             | 2          | B1 for $180^\circ = \pi$ rad o.e. or 0.78 or other   |   |
|----------|-------------------------------------------------|------------|------------------------------------------------------|---|
| 1        | // ) 01 140/100 0.0.                            | 2          | approximations                                       |   |
|          |                                                 |            | approximations                                       | 2 |
|          |                                                 |            |                                                      |   |
| 2        | 224                                             | 2          | M1 for $2^3 + 3^3 + 4^3 + 5^3$                       | 2 |
|          |                                                 |            |                                                      |   |
| 3        | triangle divided into 2 rt angled tris          | H1         |                                                      |   |
|          | $\sqrt{3}$ and 1 indicated                      | <b>S</b> 1 |                                                      |   |
|          | 60 indicated                                    | A1         |                                                      |   |
|          |                                                 |            |                                                      | 3 |
| 4        | 16.1                                            | 4          | M3 for $\frac{1}{4}$ {8.2 + 4.2 + 2 (6.4 + 5.5 + 5 + |   |
|          |                                                 |            | $\{4.7 + 4.4\}$                                      |   |
|          |                                                 |            | M2 for one slip/error                                |   |
|          |                                                 |            | M1 for two slips/errors                              |   |
|          |                                                 |            |                                                      |   |
|          | overestimate + expn eg sketch                   | 1          |                                                      | 5 |
| 5        | (i)                                             | 2          | no numbers required on axes unless                   | 5 |
| -        | 4ri                                             |            | more branches shown.                                 |   |
|          | 1-                                              |            | G1 for a correct first sweep                         |   |
|          |                                                 |            | L                                                    |   |
|          |                                                 |            |                                                      |   |
|          |                                                 |            |                                                      |   |
|          | e-                                              |            |                                                      |   |
|          | $\tan x = \frac{3}{4}$                          |            |                                                      |   |
|          | $\tan x = \frac{3}{4}$                          | M1         |                                                      | 5 |
|          | (ii) 36.8 to 36.9 and 216.8 to 216.9            | A1A1       | Allow 37, 217                                        |   |
| 6        | y'' = 2x - 6                                    | B1         | Anow 57, 217                                         |   |
| v        | y'' = 0 at $x = 3$                              | B1         |                                                      |   |
|          | y' = 0 at $x = 3y' = 0$ at $x = 3$              | B1         |                                                      |   |
|          | showing y' does not change sign                 | E1         | or that $y''$ changes sign                           | 4 |
|          | showing y does not change sign                  |            |                                                      |   |
| 7        | (i) 5                                           | 2          | M1 for $6 = 1.2r$                                    |   |
|          |                                                 |            |                                                      |   |
|          | (ii) 5.646 to 2 sf or more                      | 3          | M2 for $2 \times 5x \sin 0.6$                        |   |
|          |                                                 |            | or $\sqrt{5^2 + 5^2 - 2.5.5}$ . cos 1.2)             |   |
|          |                                                 |            | or 5 sin 1.2/sin 0.971                               |   |
|          | 2                                               |            | M1 for these methods with 1 error                    | 5 |
| 8        | $\frac{2}{3}x^{\frac{3}{2}} - 3x^{-2} + c$ o.e. | 5          | 1 for each element                                   | 5 |
| 9        | (i) $\log_{10} y = 0.5x + 3$                    | B3         | B1 for each term scored in either part               | 5 |
| <b>,</b> | (1) 10510 y = 0.5x + 5                          | 5          | -                                                    |   |
|          | (ii) $y = 10^{0.5x + 3}$ isw                    | 2          | o.e. e.g. $y = 1000 \times 10^{\sqrt{x}}$            |   |
|          |                                                 |            |                                                      | 5 |
| L        | ļ                                               | Į          |                                                      | 5 |

Section B

| 10 | i   |                                                                                                                              | M1                   | aondona ona arror                                                                                           |   |
|----|-----|------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------|---|
| 10 | 1   | y' = 6 - 2x                                                                                                                  | M1<br>M1             | condone one error                                                                                           |   |
|    |     | y' = 0 used                                                                                                                  | A1                   |                                                                                                             |   |
|    |     | x = 3                                                                                                                        |                      |                                                                                                             |   |
|    |     | <i>y</i> = 16                                                                                                                | A1                   |                                                                                                             |   |
|    |     | (0, 7) (–1, 0) and (7,0) found or marked on graph                                                                            | 3                    | 1 each                                                                                                      |   |
|    |     | sketch of correct shape                                                                                                      | 1                    | must reach pos. y - axis                                                                                    | 8 |
|    | ii  | 58.6 to 58.7                                                                                                                 | 3<br>M1              | B1 for $7x + 3x^2 - x^3/3$<br>[their value at 5] – [their value at 1]<br>dependent on integration attempted | 3 |
|    | iii | using his (ii) and 48                                                                                                        | 1                    | dependent on integration attempted                                                                          |   |
|    |     | using ins (ii) and 40                                                                                                        | 1                    |                                                                                                             | 1 |
|    |     |                                                                                                                              |                      |                                                                                                             |   |
| 11 | i   | $3x^2 - 6$                                                                                                                   | 2                    | 1 if one error                                                                                              | 2 |
|    | ii  | $-\sqrt{2} < x < \sqrt{2}$                                                                                                   | 3                    | M1 for using their $y'=0$<br>B1 f.t. for both roots found                                                   | 3 |
|    | iii | subst $x = -1$ in their $y' = -3$<br>y = 7 when $x = -1y + 3x = 4$                                                           | B1<br>M1<br>A1       | f.t.<br>f.t.<br>3 terms                                                                                     |   |
|    |     | $x^{3} - 6x + 2 = -3x + 4$<br>(2, -2) c.a.o.                                                                                 | M1<br>A1,A1          | f.t.                                                                                                        |   |
|    |     |                                                                                                                              |                      |                                                                                                             | 6 |
| 12 | i   | A 23                                                                                                                         | 2                    | M1 for 5, 7, 9 etc or AP with $a = 5, d = 2$                                                                | 2 |
|    |     | B 24                                                                                                                         | 2                    | M1 for $51 = 5 + 2(n - 1)$ o.e.                                                                             | 2 |
|    |     | C 480                                                                                                                        | 2                    | M1 for attempted use of sum of AP formula eg 20/2[10+19×2]                                                  | 2 |
|    | ii  | A 11.78 – 11.80                                                                                                              | 2                    | Tormana eg 20/2[10+17^2]                                                                                    |   |
|    |     | $\begin{array}{l} B \ 5 \ x \ 1.1^{n-1} > 50 \\ 1.1^{n-1} > 10 \\ (n-1) \ \log \ 1.1 > 1 \\ n-1 > 1/ \log \ 1.1 \end{array}$ | B1<br>B1<br>L1<br>A1 | Or other step towards completion<br>(NB answer given)                                                       |   |
|    |     | n = 26                                                                                                                       | 1                    | independent                                                                                                 |   |

Mark Scheme 4752 June 2006 Section A

| 0000 | tion A                                                                                                                                                                                                                                |                              |                                                                                                                                                                                                                                   |   |    |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|
| 1    | 1, 3                                                                                                                                                                                                                                  | 1,1                          |                                                                                                                                                                                                                                   | 2 |    |
| 2    | <i>r</i> = 0.2                                                                                                                                                                                                                        | 3                            | M1 for $10 = 8/(1 - r)$ , then<br>M1 dep't for any correct step                                                                                                                                                                   | 3 |    |
| 3    | 1/√15 i.s.w. not +/–                                                                                                                                                                                                                  | 3                            | M2 for $\sqrt{15}$ seen<br>M1 for rt angled triangle with side 1 and<br>hyp 4, or $\cos^2 \theta = 1 - 1/4^2$ .                                                                                                                   | 3 |    |
| 4    | $x^{5}/5 - 3 x^{-1}/-1 + x$                                                                                                                                                                                                           | B3                           | 1 each term                                                                                                                                                                                                                       |   |    |
|      | [value at 2 – value at 1] attempted 5.7 c.a.o.                                                                                                                                                                                        | M1<br>A1                     | dep't on B2                                                                                                                                                                                                                       | 5 |    |
| 5    | $[y = ] 3x - x^{3}/3 + c$<br>subst of (6, 1) in their eqn with c<br>$y = 3x - x^{3}/3 + 55$ c.a.o                                                                                                                                     | B1<br>B1<br>M1<br>A1         | Dep't on integration attempt<br>Dep't on B0B1<br>Allow $c = 55$ isw                                                                                                                                                               | 4 | 17 |
| 6    | (i) 3, 8, 13, 18<br>(ii) use of $n/2[2a + (n - 1)d]$<br>(S <sub>100</sub> = ) 25 050 or (S <sub>50</sub> = ) 6275<br>(S <sub>49</sub> = ) 6027 or (S <sub>51</sub> = ) 6528<br>their(S <sub>100</sub> - S <sub>50</sub> ) dep't on M1 | B1<br>M1<br>A1<br>M1<br>A1   | Ignore extras<br>Use of $a + (n - 1)d$<br>$u_{51} = 253 \ u_{100} = 498$<br>$u_{50} = 248 \ u_{52} = 258$<br>$50/2(\text{their}(u_{51} + u_{100})) \text{ dep't on M1}$<br>or $50/2[2 \times \text{their}(u_{51}) + 49 \times 5]$ | 5 |    |
| 7    | 18 775 cao(i) sketch of correct shape<br>correct period and amplitudeperiod halved for $y = \cos 2x$ ;<br>amplitude unchanged(ii) 30, 150, 210, 330                                                                                   | G1<br>G1<br>G1<br>B2         | Not ruled lines<br>need 1 and –1 indicated; nos. on horiz<br>axis not needed if one period shown<br>B1 for 2 of these, ignore extras outside<br>range.                                                                            | 5 | -  |
| 8    | $ \frac{\sqrt{x} = x^{\frac{1}{2}} \text{ soi}}{18x^2, \frac{1}{2}x^{-\frac{1}{2}}}  36x  Ax^{-3/2} (from Bx^{-\frac{1}{2}}) $                                                                                                        | B1<br>B1B1<br>B1<br>B1<br>B1 | -1 if d/dx(3) not = 0<br>any A,B                                                                                                                                                                                                  | 5 |    |
| 9    | $3x \log 5 = \log 100$<br>$3x = \log 100/\log 5$<br>x = 0.954                                                                                                                                                                         | M1<br>M1<br>A2               | allow any or no base or $3x = \log_5 100$<br>dep't<br>A1 for other rot versions of 0.9537<br>SC B2/4 for 0.954 with <u>no</u> log wkg<br>SC B1 r.o.t. 0.9537                                                                      | 4 | 19 |

|    | Sec          | tion B                                                                                                                           |                            |                                                                      |   |    |
|----|--------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------|---|----|
| 10 | i<br>(A)     | $5.2^2 + 6.3^2 - 2 \times 5.2 \times 6.3 \times \cos 57$ "                                                                       | M2                         | M1 for recognisable attempt at cos rule.<br>or greater accuracy      |   |    |
|    | ()           | ST = 5.6 or 5.57 cao                                                                                                             | A1                         |                                                                      | 3 |    |
|    | i<br>(D)     | sin T/5.2 = sin(their 57)/their ST<br>T=51 to 52 or S = 71 to 72                                                                 | M1<br>A1                   | Or sin S/6.3 = $\dots$ or cosine rule                                |   |    |
|    | ( <i>B</i> ) | bearing $285 + \text{their T}$<br>or $408 - \text{their S}$                                                                      | B1                         | If outside 0 to 360, must be adjusted                                | 3 |    |
|    | ii           | 5.2 $\theta$ , 24 × 26/60<br>$\theta$ = 1.98 to 2.02<br>$\theta$ = their 2 × 180/ $\pi$ or 114.6°<br>Bearing = 293 to 294 cao    | B1B1<br>B1<br>M1<br>A1     | Lost for all working in degrees<br>Implied by 57.3                   | 5 | 11 |
| 11 | i            | $y' = 3x^2 - 6x$                                                                                                                 | B1                         | condone one error                                                    |   |    |
|    |              | use of y' = 0<br>(0, 1) or (2, -3)                                                                                               | M1<br>A2                   | A1 for one correct or $x = 0$ , 2<br>SC B1 for (0,1) from their $y'$ |   |    |
|    |              | sign of y′′ used to test or y′either<br>side                                                                                     | T1                         | Dep't on M1 or <i>y</i> either side or clear<br>cubic sketch         | 5 |    |
|    | ii           | y'(-1) = 3 + 6 = 9<br>$3x^2 - 6x = 9$<br>x = 3<br>At P $y = 1$                                                                   | B1<br>M1<br>A1<br>B1<br>B1 | ft for their <i>y</i> '<br>implies the M1                            |   |    |
|    |              | grad normal = $-1/9$ cao<br>y - 1 = -1/9 (x - 3)<br>intercepts 12 and 4/3or use of<br>$\int_{12}^{12} 4 (x - 1) (x - 3) (x - 3)$ | M1<br>B1                   | ft their (3, 1) and their grad, not 9<br>ft their normal (linear)    |   |    |
|    |              | $\int_{0}^{12} \frac{4}{3} - \frac{1}{9} x  dx \text{ (their normal)}$<br>$\frac{1}{2} \times 12 \times \frac{4}{3} \text{ cao}$ | A1                         |                                                                      | 8 | 13 |
| 12 | i            | $log_{10} P = log_{10} a + log_{10} 10^{bt}$<br>$log_{10} 10^{bt} = bt$<br>intercept indicated as log_{10}a                      | B1<br>B1<br>B1             | condone omission of base                                             | 3 |    |
|    | ii           | 3.9(0), 3.94, 4(.00), 4.05, 4.11<br>plots ft                                                                                     | T1<br>P1                   | to 3 sf or more; condone one error<br>1 mm                           |   |    |
|    |              | line of best fit ft                                                                                                              | L1                         | ruled and reasonable                                                 | 3 |    |
|    | iii          | (gradient = ) 0.04 to 0.06 seen<br>(intercept = ) 3.83 to 3.86 seen<br>(a = ) 6760 to 7245 seen                                  | M1<br>M1<br>A1             |                                                                      |   |    |
|    |              | <i>P</i> = 7000 x 10 <sup>0.05<i>t</i></sup> oe                                                                                  | A1                         | $7000 \times 1.12^{t}$<br>SC P = 10 <sup>0.05t+3.85</sup> left A2    | 4 |    |
|    | iv           | 17 000 to 18 500                                                                                                                 | B2                         | 14 000 to 22 000 B1                                                  | 2 | 12 |

Mark Scheme 4752 January 2007

| 290 | ction A                                                                                                                                              | •                              |                                                                                                                                                              |   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 1   | $\frac{5}{2} \times 6x^{\frac{3}{2}}$                                                                                                                | 1+1                            | - 1 if extra term                                                                                                                                            | 2 |
| 2   | -0.2                                                                                                                                                 | 3                              | M1 for $5 = \frac{6}{1-r}$ and M1 dep for correct constructive step                                                                                          | 3 |
| 3   | √8 or 2√2 not ±√8                                                                                                                                    | 3                              | M1 for use of $\sin^2 \theta + (1/3)^2 = 1$<br>and M1for $\sin \theta = \sqrt{8/3}$ (ignore ±)<br>Diag.: hypot = 3, one side =1 M1<br>3rd side $\sqrt{8}$ M1 | 3 |
| 4   | (i) C<br>(ii) B<br>(iii) 2 <sup>n-1</sup>                                                                                                            | 1<br>1<br>1                    |                                                                                                                                                              | 3 |
| 5   | <ul> <li>(i) −0.93, -0.930, -0.9297</li> <li>(ii) answer strictly between 1.91 and 2 or 2 and 2.1</li> </ul>                                         | 2<br>B1                        | M1 for grad = $(1 - \text{their } y_B)/(2 - 2.1)$<br>if M0, SC1 for 0.93<br>don't allow 1.9 recurring                                                        |   |
|     | (iii) $y' = -8/x^3$ , gradient = -1                                                                                                                  | M1A1                           |                                                                                                                                                              | 5 |
| 6   | At least one cycle from (0, 0)<br>amplitude 1 and period 360[°]<br>indicated                                                                         | G1<br>G1dep                    |                                                                                                                                                              |   |
|     | 222.8 to 223 and 317 to 317.2 [°]                                                                                                                    | 2                              | 1 each, ignore extras                                                                                                                                        | 4 |
| 7   | x < 0 and $x > 6$                                                                                                                                    | 3                              | B2 for one of these or for 0 and 6<br>identified or M1 for $x^2$ -6x > 0 seen<br>(M1 if y found correctly and sketch<br>drawn)                               | 3 |
| 8   | a + 6d = 6  correct<br>$30 = \frac{10}{2} (2a + 9d) \text{ correct o.e.}$<br>elimination using their equations<br>a = -6  and  d = 2<br>5th term = 2 | M1<br>M1<br>M1f.t.<br>A1<br>A1 | Two equations in a and d                                                                                                                                     | 5 |
| 9   | $(y =) 2x^3 + 4x^2 - 1$<br>accept $2x^3 + 4x^2 + c$ and $c = -1$                                                                                     | 4                              | M2 for $(y =) 2x^3 + 4x^2 + c$ (M1 if one<br>error) and M1 for subst of (1, 5) dep on<br>their y =, +c, integration attempt.                                 | 4 |
| 10  | (i) $3 \log_a x$<br>ii) $b = \frac{1000}{c}$                                                                                                         | 2<br>2                         | M1 for 4 $\log_a x$ or $-\log_a x$ ; or $\log x^3$<br>M1 for 1000 or $10^3$ seen                                                                             | 4 |

| 4752 | 2     | Mark Sche                                                                                                                                                                          | me                                       | January 200                                                                                                                                                       | )7 |
|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 11   | i     | Correct attempt at cos rule<br>correct full method for C<br>C = 141.1<br>bearing = [0]38.8 cao                                                                                     | M1<br>M1<br>A1<br>A1                     | any vertex, any letter<br>or B4                                                                                                                                   | 4  |
|      | ii    | $\frac{1}{2} \times 118 \times 82 \times sin$ their C or supp.                                                                                                                     | M1                                       | or correct use of angle A or angle B                                                                                                                              | 2  |
|      | iiiA  | 3030 to 3050 [m <sup>2</sup> ]<br>sin ( $\theta$ /2) = ( ½ × 189)/130                                                                                                              | A1<br>M1                                 | or $\cos\theta = (130^2 + 130^2 - 189^2)/(2x130x130)$                                                                                                             | 2  |
|      | iiiB  | $1.6276 \rightarrow 1.63$<br>$0.5 \times 130^2 \times \sin 1.63$<br>$0.5 \times 130^2 \times 1.63$<br>their sector – their triangle AOB<br>5315 to 5340                            | A1<br>M1<br>M1<br>A1<br>A1               | In all methods, the more accurate<br>number to be seen.<br>condone their $\theta$ (8435)<br>condone their $\theta$ in radians (13770)<br>dep on sector > triangle | 4  |
| 12   | i<br> | (2x - 3)(x - 4)<br>x = 4 or 1.5                                                                                                                                                    | M1<br>A1A1                               | or $(11 \pm \sqrt{(121 - 96))}/4$<br>if M0, then B1 for showing $y = 0$<br>when $x = 4$ and B2 for $x = 1.5$                                                      | 3  |
|      | ii    | y' = 4x - 11<br>= 5 when x = 4 c.a.o.<br>grad of normal = -1/their y'<br>y[ - 0 ]= <u>their</u> -0.2 (x - 4)<br>y-intercept for <u>their</u> normal<br>area = 1/2 x 4 x 0.8 c.a.o. | M1<br>A1<br>M1f.t.<br>M1<br>B1f.t.<br>A1 | condone one error<br>or 0 = their (-0.2)x4 + c dep on<br>normal attempt<br>s.o.i. normal must be linear or<br>integrating <u>their</u> f(x) from 0 to 4 M1        | 6  |
|      | iii   | $\frac{2}{3}x^3 - \frac{11}{2}x^2 + 12x$<br>attempt difference between value<br>at 4 and value at 1.5<br>[-]5 $\frac{5}{24}$ o.e. or [-]5.2(083)                                   | M1<br>M1<br>A1                           | condone one error, ignore + c<br>ft their (i), dep on integration attempt.<br>c.a.o.                                                                              | 3  |
| 13   | i     | $log_{10} y = log_{10} k + log_{10} 10^{ax}$<br>log_{10} y = ax + log_{10} k compared<br>to y = mx+c                                                                               | M1<br>M1                                 |                                                                                                                                                                   | 2  |
|      | ii    | 2.9(0), 3.08, 3.28, 3.48, 3.68<br>plots [tol 1 mm]<br>ruled line of best fit drawn                                                                                                 | T1<br>P1f.t<br>L1f.t.                    | condone one error                                                                                                                                                 | 3  |
|      | iii   | intercept = 2.5 approx<br>gradient = 0.2 approx<br>y = their $300x \ 10^{x(\text{their } 0.2)}$<br>or y = $10^{(\text{their } 2.5 + \text{their } 0.2x)}$                          | M1<br>M1<br>M1f.t.                       | or $y - 2.7 = m(x - 1)$                                                                                                                                           | 3  |
|      | iv    | subst 75000 in any x/y eqn<br>subst in a correct form of the<br>relationship<br>11,12 or 13                                                                                        | M1<br>M1<br>A1                           | B3 with evidence of valid working                                                                                                                                 | 3  |
|      | v     | "Profits change" or any reason for<br>this.                                                                                                                                        | R1                                       | too big, too soon                                                                                                                                                 | 1  |

### Mark Scheme 4752 June 2007

| 1 | (i) −√3                                                                                                                                                    | 1                          | Accept any exact form                                                                                                                                                                                                      |   |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|   | (ii) $\frac{5}{3}\pi$                                                                                                                                      | 2                          | accept $\frac{5\pi}{3}$ , $1^{2/3}\pi$ . M1 $\pi$ rad = 180° used correctly                                                                                                                                                | 3 |
| 2 | $y' = 6 \times \frac{3}{2} x^{\frac{1}{2}} \text{ or } 9x^{\frac{1}{2}} \text{ o.e.}$                                                                      | 2                          | 1 if one error in coeff or power, or extra<br>term                                                                                                                                                                         |   |
|   | $y'' = \frac{9}{2}x^{-\frac{1}{2}}$ o.e.                                                                                                                   | 1                          | f.t. their y' only if fractional power                                                                                                                                                                                     |   |
|   | $\sqrt{36} = 6$ used<br>interim step to obtain $\frac{3}{4}$                                                                                               | M1<br>A1                   | f.t. their y"<br>www answer given                                                                                                                                                                                          | 5 |
| 3 | (i) $y = 2f(x)$<br>(ii) $y = f(x - 3)$                                                                                                                     | 2<br>2                     | 1 if 'y=' omitted [penalise only once]<br>M1 for $y = kf(x), k > 0$<br>M1 for $y = f(x + 3)$ or $y = f(x - k)$                                                                                                             | 4 |
| 4 | (i) 11<br>27 or ft from their 11<br>(ii) 20                                                                                                                | 1<br>1<br>2                | M1 for $1 \times 2 + 2 \times 3 + 3 \times 4$ soi, or 2,6,12<br>identified, or for substituting $n = 3$ in<br>standard formulae                                                                                            | 4 |
| 5 | $\theta = 0.72 \text{ o.e}$<br>13.6 [cm]                                                                                                                   | 2<br>3                     | M1 for $9 = \frac{1}{2} \times 25 \times \theta$ No marks for using<br>degrees unless attempt to convert<br>B2 ft for $10 + 5 \times$ their $\theta$ or for 3.6 found<br>or M1 for $s = 5 \theta$ soi                      | 5 |
| 6 | <ul> <li>(i) log a 1 = 0, log a a = 1</li> <li>(ii) showing both sides equivalent</li> </ul>                                                               | 1+1<br>3                   | NB, if not identified, accept only in this<br>order<br>M1 for correct use of 3 <sup>rd</sup> law and M1 for<br>correct use of 1 <sup>st</sup> or 2 <sup>nd</sup> law. Completion<br>www A1. Condone omission of <i>a</i> . | 5 |
| 7 | <ul><li>(i) curve with increasing gradient<br/>any curve through (0, 1) marked</li><li>(ii) 2.73</li></ul>                                                 | G1<br>G1<br>3              | correct shape in both quadrants<br>M1 for $x \log 3 = \log 20$ (or $x = \log_3 20$ ) and<br>M1 for $x = \log 20 \div \log 3$ or B2 for other<br>versions of 2.726833 or B1 for other<br>answer 2.7 to 2.8                  | 5 |
| 8 | (i) $2(1 - \sin^2 \theta) + 7 \sin \theta = 5$<br>(ii) $(2 \sin \theta - 1)(\sin \theta - 3)$<br>$\sin \theta = \frac{1}{2}$<br>$30^\circ$ and $150^\circ$ | 1<br>M1<br>DM1<br>A1<br>A1 | for $\cos^2 \theta + \sin^2 \theta = 1$ o.e. used<br>1 <sup>st</sup> and 3 <sup>rd</sup> terms in expansion correct<br>f.t. factors<br>B1,B1 for each solution obtained by any<br>valid method, ignore extra solns outside | 5 |

| 6  | •   | 1 6 2 10 12                                                        | 3.64     | 1                                                                        | <u> </u> |
|----|-----|--------------------------------------------------------------------|----------|--------------------------------------------------------------------------|----------|
| 9  | i   | $y' = 6x^2 - 18x + 12$                                             | M1       | condone one error                                                        |          |
|    |     | = 12                                                               | M1       | subst of $x = 3$ in <u>their</u> $y'$                                    |          |
|    |     | y = 7 when $x = 3tgt is y - 7 = 12 (x - 3)$                        | B1<br>M1 | ft their word w                                                          |          |
|    |     |                                                                    | A1       | f.t. their y and y' $a_1 B_2$ for aboving line is ining (2, 7) and       |          |
|    |     | verifying $(-1, -41)$ on tgt                                       | AI       | or B2 for showing line joining $(3, 7)$ and $(-1, -41)$ has arrediant 12 | 5        |
|    | ii  | y' = 0 soi                                                         | M1       | (-1, -41) has gradient 12<br>Their y'                                    | 5        |
|    | 11  | y = 0.801<br>quadratic with 3 terms                                | M1<br>M1 | Any valid attempt at solution                                            |          |
|    |     | x = 1  or  2                                                       | A1       | or A1 for (1, 3) and A1 for (2,2) marking                                |          |
|    |     | y = 3  or  2                                                       | A1<br>A1 | to benefit of candidate                                                  | 4        |
|    | iii | cubic curve correct orientation                                    | G1       |                                                                          | -        |
|    |     | touching x- axis only at (0.2,0)                                   | 01       |                                                                          |          |
|    |     | max and min correct                                                | G1       | f.t.                                                                     |          |
|    |     | curve crossing y axis only at $-2$                                 | G1       |                                                                          | 3        |
|    |     | · · · · · · · · · · · · · · · · · · ·                              |          |                                                                          | -        |
| 10 | i   | 970 [m]                                                            | 4        | M3 for attempt at trap rule                                              |          |
|    |     |                                                                    |          | $\frac{1}{2} \times 10 \times (28 + 22 + 2[19 + 14 + 11 + 12 + 16])$     |          |
|    |     |                                                                    |          | M2 with 1 error, M1 with 2 errors.                                       |          |
|    |     |                                                                    |          | Or M3 for 6 correct trapezia, M2 for 4                                   |          |
|    |     |                                                                    |          | correct trapezia, M1 for 2 correct                                       | 4        |
|    | ii  | concerns on the of trans is                                        | 1        | trapezia.                                                                |          |
|    | ш   | concave curve or line of traps is above curve                      | 1        | Accept suitable sketch                                                   |          |
|    |     | $(19+14+11+11+12+16) \times 10$                                    | M1       | M1 for 3 or more rectangles with values                                  | 3        |
|    |     | 830  to  880  incl.[m]                                             | A1       | from curve.                                                              | 5        |
|    | iii | $t = 10, v_{\text{model}} = 19.5$                                  | B1       | nom eurve.                                                               |          |
|    |     | difference = $0.5$ compared with 3%                                |          |                                                                          |          |
|    |     | of $19 = 0.57$                                                     | B1f.t.   | 0.5                                                                      |          |
|    |     |                                                                    |          | or $\frac{0.5}{19} \times 100 \approx 2.6$                               | 2        |
|    | iv  | $28t - \frac{1}{2}t^2 + 0.005t^3$ o.e.                             | M1       | 2 terms correct, ignore $+ c$                                            |          |
|    | - ' | value at 60 [- value at 0]                                         | M1       | ft from integrated attempt with 3 terms                                  |          |
|    |     | 960                                                                | A1       |                                                                          | 3        |
| 11 | ai  | 13                                                                 | 1        |                                                                          | 1        |
|    | aii | 120                                                                | 2        | M1 for attempt at AP formula ft their <i>a</i> ,                         |          |
|    |     |                                                                    |          | $d \text{ or for } 3 + 5 + \ldots + 21$                                  | 2        |
|    | bi  | 125                                                                | 2        | $1 (5)^{3}$                                                              |          |
|    |     | 1296                                                               |          | M1 for $\frac{1}{6} \times \left(\frac{5}{6}\right)^3$                   | 2        |
|    | ii  | a = 1/6, r = 5/6 s.o.i.                                            | 1+1      | If not specified, must be in right order                                 |          |
|    |     | -                                                                  | - • •    |                                                                          |          |
|    |     | $S_{\infty} = \frac{\frac{1}{6}}{1 - \frac{5}{6}} \text{ o.e.}$    | 1        |                                                                          | 3        |
|    |     | 0                                                                  |          |                                                                          |          |
|    | iii | $\left(\frac{5}{6}\right)^{n-1} < 0.006$                           | M1       |                                                                          |          |
|    |     | $(n-1)\log_{10}\left(\frac{5}{6}\right) < \log_{10}0.006$          | M1       | condone omission of base, but not                                        |          |
|    |     |                                                                    |          | brackets                                                                 |          |
|    |     | $n-1 > \frac{\log_{10} 0.006}{\log_{10} \left(\frac{5}{6}\right)}$ | DM1      |                                                                          | 4        |
|    |     |                                                                    |          |                                                                          | 4        |
|    |     | $n_{\min} = 30$                                                    | B1       | NB change of sign must come at correct                                   |          |
|    |     | Or                                                                 |          | place                                                                    |          |
|    |     | $\log(1/6) + \log(5/6)^{n-1} < \log 0.001$                         | M1       |                                                                          |          |
|    |     | $(n-1)\log(5/6) < \log(0.001/(1/6))$                               | M1       |                                                                          |          |
|    |     |                                                                    |          |                                                                          |          |

January 2008

### 4752 (C2) Concepts for Advanced Mathematics

| 1 | $40x^3$                                                                                                                                                  | 2                   | -1 if extra term                                                                                                                              | 2 |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---|
| 2 | (i) 3                                                                                                                                                    | 1                   |                                                                                                                                               |   |
|   | (ii) 141                                                                                                                                                 | 2                   | M1 for $9 \times (1 + 2 + 3 + 4 + 5) + 1 + 2 + 3$                                                                                             | 3 |
| 3 | right angled triangle with 1 and 2 on<br>correct sides<br>Pythagoras used to obtain hyp = $\sqrt{5}$<br>$\cos \theta = \frac{a}{h} = \frac{2}{\sqrt{5}}$ | M1<br>M1<br>A1      | or M1 for $\sin\theta = \frac{1}{2}\cos\theta$ and M1 for substituting<br>in $\sin^2 \theta + \cos^2 \theta = 1$<br>E1 for sufficient working | 3 |
| 4 | <ul> <li>(i)line along y = 6 with V (1, 6), (2, 2), (3, 6)</li> <li>(ii) line along y = 3 with V (-2,3), (-1,1), (0,3)</li> </ul>                        | 2                   | 1 for two points correct<br>1 for two points correct                                                                                          | 4 |
| 5 | $2x^{6} + \frac{3}{4}x^{\frac{4}{3}} + 7x + c$                                                                                                           | 5                   | 1 for $2x^{6}$ ; 2 for $\frac{3}{4}x^{\frac{4}{3}}$ or 1 for other $kx^{\frac{4}{3}}$ ; 1 for $7x$ ;<br>1 for $+c$                            | 5 |
| 6 | <ul> <li>(i) correct sine shape through O amplitude of 1 and period 2π shown</li> <li>(ii) 7π/6 and 11π/6</li> </ul>                                     | 1<br>1<br>3         | B2 for one of these; 1 for $-\pi/6$ found                                                                                                     | 5 |
| 7 | (i) 60                                                                                                                                                   | 2                   | M1 for $2^2 + 2^3 + 2^4 + 2^5$ o.e.                                                                                                           | 5 |
|   | $\begin{array}{c} \text{(ii)} -6\\ \text{(iii)} \\                                    $                                                                  | 1<br>1<br>1         | Correct in both quadrants<br>Through (0, 1) shown dep.                                                                                        |   |
|   |                                                                                                                                                          |                     |                                                                                                                                               | 5 |
| 8 | $r = 1/3 \text{ s.o.i.}$ $a = 54 \text{ or ft } 18 \div \text{ their } r$ $S = \frac{a}{1 - 1} \text{ used with } -1 < r < 1$                            | 2<br>M1<br>M1<br>A1 | 1 mark for ar = $18 \text{ and } ar^3 = 2 \text{ s.o.i.}$                                                                                     |   |
|   | $\frac{1-r}{S=81 \text{ c.a.o.}}$                                                                                                                        |                     |                                                                                                                                               | 5 |
| 9 | (i) 0.23 c.a.o.<br>(ii) 0.1 or 1/10                                                                                                                      | 1<br>1              | 10 <sup>-1</sup> not sufficient                                                                                                               |   |
|   | (iii) $4(3x + 2)$ or $12x + 8$                                                                                                                           | 1                   |                                                                                                                                               | 4 |
|   | (iv) $[y = ] 10^{3x+2}$ o.e.                                                                                                                             | <u>1</u><br>5       |                                                                                                                                               |   |

#### Section B

|    |     | L 400/2                                                              | D4       |                                                 |   |
|----|-----|----------------------------------------------------------------------|----------|-------------------------------------------------|---|
| 10 | i   | $h = 120/x^2$<br>A = 2x <sup>2</sup> + 4xh o.e.                      | B1<br>M1 |                                                 |   |
|    |     | completion to given answer                                           | A1       | at least one interim step shown                 | 3 |
|    |     | completion to given answer                                           |          |                                                 |   |
|    | ii  | $A' = 4x - 480/x^2$ o.e.                                             | 2        | 1 for $kx^2$ o.e. included                      |   |
|    |     | $A^{\prime\prime} = 4 + 960 / x^3$                                   | 2        | ft their A' only if $kx^2$ seen ; 1 if one      | 4 |
|    |     |                                                                      |          | error                                           |   |
|    | iii | use of $A' = 0$                                                      | M1       |                                                 |   |
|    |     | $x = \sqrt[3]{120}$ or 4.9(3)                                        | A1       |                                                 |   |
|    |     | Test using A' or A'' to confirm                                      |          |                                                 |   |
|    |     | minimum                                                              | T1       |                                                 | 5 |
|    |     | Substitution of their x in A                                         | M1       | Dependent on previous M1                        | 5 |
|    |     | <i>A</i> = 145.9 to 146                                              | A1       |                                                 |   |
| 11 | iA  | $BC^2 = 348^2 + 302^2 - 2 \times 348 \times$                         | M2       | M1 for recognisable attempt at                  |   |
|    |     | 302 × cos 72°                                                        |          | Cosine Rule                                     |   |
|    |     | BC = 383.86                                                          | A1       | to 3 sf or more                                 |   |
|    |     | 1033.86[m] or ft 650 + their BC                                      | 1        | accept to 3 sf or more                          | 4 |
|    | iB  | sin P sin 72                                                         | M1       | Cosino Rulo accontable or Sino Rule             |   |
|    |     | $\frac{\sin B}{302} = \frac{\sin 72}{\text{their } BC}$              |          | Cosine Rule acceptable or Sine Rule to find C   |   |
|    |     | 302 their <i>BC</i><br>B = 48.4                                      | A1       |                                                 |   |
|    |     | B = 40.4<br>355 - their B o.e.                                       | M1       | or 247 + their C                                |   |
|    |     | answer in range 306 to307                                            | A1       |                                                 | 4 |
|    |     |                                                                      |          |                                                 |   |
|    | ii  | Arc length PQ = $\frac{224}{360} \times 2\pi \times 120$             |          | M1 for $\frac{136}{360} \times 2\pi \times 120$ |   |
|    |     |                                                                      | M2       | 360                                             |   |
|    |     | o.e. or 469.1 to 3 sf or more                                        | B1       |                                                 |   |
|    |     | QP = 222.5to 3 sf or more<br>answer in range 690 to 692 [m]          | A1       |                                                 |   |
|    |     |                                                                      |          |                                                 | 4 |
|    |     |                                                                      |          |                                                 |   |
| 12 | iA  | $x^4 = 8x$                                                           | M1       |                                                 |   |
|    |     | (2, 16) c.a.o.                                                       | A1       |                                                 |   |
|    |     | PQ = 16 and completion to show $\frac{1}{2} \times 2 \times 16 = 16$ | A1       | NB answer 16 given                              | 3 |
|    |     | /2 X Z X 10 = 10                                                     | AI       | ND answer to given                              | 3 |
|    | iB  | x <sup>5</sup> /5                                                    | M1       |                                                 |   |
|    | טי  | evaluating their integral at their                                   | M1       | ft only if integral attempted, not for $x^4$    |   |
|    |     | co-ord of P and zero [or 32/5 o.e.]                                  |          | or differentiation                              |   |
|    |     | 9.6 o.e.                                                             | A1       | c.a.o.                                          | 3 |
|    |     |                                                                      |          |                                                 |   |
|    | iiΑ | $6x^2h^2 + 4xh^3 + h^4$                                              | 2        | B1 for two terms correct.                       |   |
|    |     |                                                                      |          |                                                 | 2 |
|    | iiВ | $4x^3 + 6x^2h + 4xh^2 + h^3$                                         | 2        | B1 for three terms correct                      | 2 |
|    |     |                                                                      | _        |                                                 |   |
|    | iiC | 4 <i>x</i> <sup>3</sup>                                              | 1        |                                                 | 1 |
|    |     |                                                                      |          |                                                 |   |
|    | iiD | gradient of [tangent to] curve                                       | 1        |                                                 | 1 |
|    |     |                                                                      |          |                                                 |   |

2

### 4752 (C2) Concepts for Advanced Mathematics

| 1  | 210 c.a.o.                                                    | 2   | 1 for $\pi$ rads = 180° soi                                   | 2 | 1 |
|----|---------------------------------------------------------------|-----|---------------------------------------------------------------|---|---|
| -  |                                                               | -   |                                                               | - |   |
| 2  |                                                               | 1   |                                                               |   | 1 |
| -  | (i) $5.4 \times 10^{-3}$ , 0.0054 or $\frac{27}{5000}$        |     |                                                               |   |   |
|    | 5000                                                          | 2   | M1 for S = $5.4 / (1 - 0.1)$                                  | 3 |   |
|    |                                                               |     |                                                               | - |   |
| 3  | (ii) 6 www                                                    | 2   | 1 for stratch plus and other element                          | 2 | - |
| ა  | stretch, parallel to the y axis, sf 3                         | 2   | 1 for stretch plus one other element correct                  | 2 |   |
|    | $[f'(x) = ] 12 - 3x^2$                                        |     |                                                               |   | - |
| 4  |                                                               | B1  |                                                               |   |   |
|    | their $f'(x) > 0$ or $= 0$ soi                                | M1  | and and a set of a still a strugger                           | 2 |   |
|    | -2 < x < 2                                                    | A1  | condone $-2 \le x \le 2$ or "between                          | 3 |   |
| 5  | (i) grad of chord = $(2^{3.1} - 2^3)/0.1$                     | M1  | -2 and 2"                                                     |   |   |
| 5  |                                                               | A1  |                                                               |   |   |
|    | 0.e.                                                          |     |                                                               |   | 1 |
|    | = 5.74 c.a.o.                                                 | M1  | or chord with ends $x = 3 \pm h$ ,                            |   | 1 |
|    |                                                               | A1  | where $0 < h \le 0.1$                                         |   | 1 |
|    | (ii) correct use of A and C where                             |     | s.c.1 for consistent use of reciprocal of                     | 4 | 1 |
|    | for C, $2.9 < x < 3.1$                                        |     | gradient formula in parts (i) and (ii)                        | - | 1 |
|    | answer in range (5.36, 5.74)                                  |     |                                                               |   |   |
| 6  | $[y = ] kx^{3/2} [+ c]$                                       | M1  |                                                               |   | 1 |
|    | k = 4                                                         | A1  | may appear at any stage                                       |   |   |
|    | subst of (9, 105) in their eqn with c                         | M1  | must have c; must have attempted                              |   | Г |
|    |                                                               |     | integration                                                   | 4 |   |
|    | or $c = -3$                                                   | A1  |                                                               |   |   |
|    |                                                               |     |                                                               |   |   |
| 7  | sector area = 28.8 or $\frac{144}{5}$ [cm <sup>2</sup> ]      | 2   | M1 for $\frac{1}{2} \times 6^2 \times 1.6$                    |   |   |
|    | $\frac{36000 \text{ area} = 20.0001 - \frac{1}{5}}{5}$        | M1  |                                                               |   |   |
|    | c.a.o.                                                        |     |                                                               | _ |   |
|    | area of triangle = $\frac{1}{2} \times 6^2 \times \sin 1.6$   | M1  | must both be areas leading to a                               | 5 |   |
|    | 0.e.                                                          | A1  | positive answer                                               |   |   |
|    | their sector – their triangle s.o.i.                          |     |                                                               |   |   |
|    | 10.8 to 10.81 [cm <sup>2</sup> ]                              |     |                                                               |   |   |
|    |                                                               |     |                                                               |   |   |
| 8  | <i>a</i> + 10 <i>d</i> = 1 <i>or</i> 121 = 5.5(2a+10d)        | M1  | or 121 = 5.5(a + 1) gets M2                                   |   | 1 |
| -  | 5(2a + 9d) = 120 o.e.                                         | M1  | eg 2a + 9d = 24                                               |   | 1 |
|    | a = 21 s.o.i. www                                             | A1  |                                                               |   | 1 |
|    | and $d = -2$ s.o.i. www                                       | A1  |                                                               | 5 | 1 |
|    | 4th term is 15                                                | A1  |                                                               |   | 1 |
| 9  |                                                               | M1  | or <i>x</i> = log₅ 235                                        |   | 1 |
|    | $x \log 5 = \log 235 \text{ or } x = \frac{\log 235}{\log 5}$ |     |                                                               |   | 1 |
|    | 1055                                                          | A2  | A1 for 3.4 or versions of 3.392                               | 3 | 1 |
|    | 3.39                                                          |     |                                                               |   | 1 |
| 10 | $2(1 - \cos^2 \theta) = \cos \theta + 2$                      | M1  | for 1 - $\cos^2 \theta = \sin^2 \theta$ substituted           |   | 1 |
|    | $-2\cos^2\theta = \cos\theta$ s.o.i.                          | A1  | graphic calc method: allow M3 for                             |   | 1 |
|    | valid attempt at solving their                                | DM1 | intersection of $y = 2 \sin^2 \theta$ and $y = \cos^2 \theta$ |   | 1 |
|    | quadratic in $\cos \theta$                                    |     | $\theta$ + 2 and A2 for all four roots.                       |   | [ |
|    | $\cos \theta = -\frac{1}{2}$ www                              | A1  | All four answers correct but                                  |   |   |
|    | $\theta = 90, 270, 120, 240$                                  | A1  | unsupported scores B2. 120 and 240 only: B1.                  | 5 |   |
|    |                                                               |     |                                                               |   |   |

| Sec | tion I | 3                                                                                                                                                         |                      |                                                                                                                                                                    |   |
|-----|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 11  | i      | (x+5)(x-2)(x+2)                                                                                                                                           | 2                    | M1 for $a (x + 5)(x - 2)(x + 2)$                                                                                                                                   | 2 |
|     | ii     | $[(x + 2)](x^{2} + 3x - 10)$<br>x <sup>3</sup> + 3x <sup>2</sup> - 10x + 2x <sup>2</sup> + 6x - 20<br>o.e.                                                | M1<br>M1             | for correct expansion of one pair of<br>their brackets<br>for clear expansion of correct factors<br>– accept given answer from<br>$(x + 5)(x^2 - 4)$ as first step | 2 |
|     | 111    | $y' = 3x^2 + 10x - 4$<br>their $3x^2 + 10x - 4 = 0$ s.o.i.<br>x = 0.36 from formula o.e.                                                                  | M2<br>M1<br>A1       | M1 if one error<br>or M1 for substitution of 0.4 if trying<br>to obtain 0, and A1 for correct<br>demonstration of sign change                                      |   |
|     |        | (-3.7, 12.6)                                                                                                                                              | B1+1                 |                                                                                                                                                                    | 6 |
|     | iv     | (-1.8, 12.6)                                                                                                                                              | B1+1                 | accept (-1.9, 12.6) or f.t.( ½ their<br>max x, their max y)                                                                                                        | 2 |
| 12  | i      | Area = (-)0.136 seen [m <sup>2</sup> ] www                                                                                                                | 4                    | M3 for 0.1/2 × (0.14 + 0.16 + 2[0.22<br>+ 0.31 + 0.36 + 0.32]) M2 for one                                                                                          |   |
|     |        | Volume = 0.34 $[m^3]$ or ft from their area $\times 2.5$                                                                                                  | 1                    | slip; M1 for two slips<br>must be positive                                                                                                                         | 5 |
|     | ii     | $2x^4 - x^3 - 0.25 x^2 - 0.15x$ o.e.<br>value at 0.5 [- value at 0]<br>= -0.1375<br>area of cross section (of trough)<br>or area between curve and x-axis | M2<br>M1<br>A1<br>E1 | M1 for 2 terms correct<br>dep on integral attempted<br>must have neg sign                                                                                          |   |
|     |        | 0.34375 r.o.t. to 3 or more sf $[m^3]$ m <sup>3</sup> seen in (i) or (ii)                                                                                 | B1<br>U1             |                                                                                                                                                                    | 7 |
| 13  | i      | $log P = log a + b log t wwwcomparison with y = mx + cintercept = log_{10} a$                                                                             | 1<br>1<br>1          | must be with correct equation condone omission of base                                                                                                             | 3 |
|     | ii     | log t 0 0.78 1.15 1.18<br>1.20<br>log P 1.49 1.64 1.75 1.74<br>1.76<br>plots f.t.<br>ruled line of best fit                                               | 1<br>1<br>1<br>1     | accept to 2 or more dp                                                                                                                                             | 4 |
|     | 111    | gradient rounding to 0.22 or<br>0.23<br>$a = 10^{1.49}$ s.o.i.<br>$P = 31t^{m}$<br>allow the form $P = 10^{0.22 \log t}$                                  | 2<br>1<br>1          | M1 for y step / x-step<br>accept1.47 – 1.50 for intercept<br>accept answers that round to 30 –<br>32 , their positive m                                            | 4 |
|     | iv     | answer rounds in range 60 to 63                                                                                                                           | 1                    |                                                                                                                                                                    | 1 |

## 4752 (C2) Concepts for Advanced Mathematics

| 1 | $4x^5$                                                   | 1    |                                                                                 |   |
|---|----------------------------------------------------------|------|---------------------------------------------------------------------------------|---|
| - | $-12x^{-\frac{1}{2}}$                                    | -    | _1                                                                              |   |
|   |                                                          | 2    | M1 for other $kx^{-\frac{1}{2}}$                                                |   |
|   | + c                                                      | 1    |                                                                                 | 4 |
| 2 | 95.25, 95.3 or 95                                        | 4    | M3                                                                              |   |
|   |                                                          |      | $\frac{1}{2} \times 5 \times (4.3 + 0 + 2[4.9 + 4.6 + 3.9 + 2.3 + 1.2])$        |   |
|   |                                                          |      | M2 with 1 error, M1 with 2 errors.                                              |   |
|   |                                                          |      | Or M3 for 6 correct trapezia.                                                   | 4 |
| 3 | 1.45 o.e.                                                | 2    | M1 for $\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}$ oe | 2 |
| 4 | 105 and 165                                              | 3    | B1 for one of these or M1 for $2x = 210$                                        |   |
|   |                                                          |      | or 330                                                                          | 3 |
| 5 | (i) graph along $y = 2$ with V at<br>(3,2) (4,1) & (5,2) | 2    | M1 for correct V, or for $f(x+2)$                                               |   |
|   |                                                          |      |                                                                                 |   |
|   | (ii) graph along $y = 6$ with V at                       | 2    | B1 for $(2,k)$ with all other elements                                          |   |
|   | (1,6) (2,3) & (3,6)                                      |      | correct                                                                         | 4 |
| 6 | (i) 54.5                                                 | 2    | B1 for $d = 2.5$                                                                |   |
|   | (ii) Correct use of sum of AP                            | M1   | or M2 for correct formula for $S_{30}$ with                                     |   |
|   | formula with $n = 50, 20, 19$ or 21                      |      | their d                                                                         |   |
|   | with their d and $a = 7 \text{ eg } S_{50} =$            |      | M1 if one slip                                                                  |   |
|   | $3412.5, S_{20} = 615$                                   |      |                                                                                 |   |
|   |                                                          |      |                                                                                 |   |
|   | Their $S_{50} - S_{20}$ dep on use of ap                 | M1   |                                                                                 |   |
|   | formula                                                  |      |                                                                                 |   |
|   |                                                          |      |                                                                                 |   |
|   | 2797.5 c.a.o.                                            | A1   |                                                                                 | 5 |
| 7 | $8x - x^{-2}$ o.e.                                       | 2    | B1 each term                                                                    |   |
|   | their $\frac{dy}{dx} = 0$                                | 2.61 |                                                                                 | _ |
|   | $\frac{dx}{dx}$                                          | M1   | s.o.i.                                                                          | 5 |
|   | correct step                                             | DM1  | s.o.i.                                                                          |   |
|   | $x = \frac{1}{2}$ c.a.o.                                 | A1   |                                                                                 |   |
| 8 | (i) 48                                                   | 1    |                                                                                 |   |
|   | geometric, or GP                                         | 1    |                                                                                 |   |
|   | -                                                        |      |                                                                                 |   |
|   | (ii) mention of $ r  < 1$ condition o.e.                 | 1    | M1 for 192                                                                      |   |
|   | S = 128                                                  | 2    | M1 for $\frac{192}{1-\frac{1}{2}}$                                              | 5 |
|   |                                                          |      | 2                                                                               |   |
| 9 | (i) 1                                                    | 1    |                                                                                 |   |
|   | (ii) (A) $3.5 \log_a x$                                  | 2    | M1 for correct use of 1 <sup>st</sup> or 3 <sup>rd</sup> law                    |   |
|   |                                                          |      |                                                                                 |   |
|   | (ii) (B) $-\log_a x$                                     | 1    |                                                                                 | 4 |
|   |                                                          |      |                                                                                 |   |

| Section l | B |
|-----------|---|
|-----------|---|

| ii $x = 2, \text{ gradient } = 3$<br>$x = 2, y = 4$<br>$y - \text{ their } 4 = \text{ their grad } (x - 2)$ A1<br>B1<br>M1<br>M1<br>M1<br>A1differentiation must be used<br>or use of $y = \text{their } mx + c$ and subst<br>(2, their 4), dependent on diffn<br>seeniii $f(1) = 0$ or factorising to<br>$(x - 1)(6 - x)$ or $(x - 1)(x - 6)$<br>6 www1or using quadratic formula<br>correctly to obtain $x = 1$ iii $\frac{7}{2}x^2 - \frac{1}{3}x^3 - 6x$<br>value at 2 - value at 1<br>$2\frac{1}{6}$ or 2.16 to 2.17<br>$1\frac{1}{2} \times \frac{4}{3} \times 4$ - their integral<br>$0.5$ o.e.M1<br>A1for two terms correct; ignore +c<br>ft attempt at integration onlyiii150 (cm) or 1.5 m2M1 for 2.5 × 60 or 2.5 × 0.6 or for<br>$1.5$ with no units2ii(A)150 (cm) or 1.5 m2M1 for 2.5 × 60 or 2.5 × 0.6 or for<br>$1.5$ with no units2ii(A)attempt at use of cosine ruleM1<br>M1<br>A1or 2 m²4ii(A)attempt at use of cosine ruleM1<br>A1condone 1 error in substitution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 | i     | 7 - 2x                                                                  | M1    |                                     |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------|-------------------------------------------------------------------------|-------|-------------------------------------|---|
| x = 2, $y = 4$<br>y - their 4 = their grad $(x - 2)$ B1<br>M1<br>M1<br>A1or use of $y =$ their $mx + c$ and subst<br>$(2,$ their 4), dependent on diffn<br>seeniif(1) = 0 or factorising to<br>$(x - 1)(6 - x)$ or $(x - 1)(x - 6)$<br>6 wwwD1<br>A1or using quadratic formula<br>correctly to obtain $x = 1$ 6iii $\frac{7}{2}x^2 - \frac{1}{3}x^3 - 6x$<br>value at 2 - value at 1<br>$2\frac{1}{6}$ or 2.16 to 2.17<br>$\frac{1}{2} \times \frac{4}{3} \times 4$ - their integral<br>0.5 o.e.M1<br>M1<br>A1for two terms correct; ignore $+c$<br>ft attempt at integration only611i(A)150 (cm) or 1.5 m2M1 for $2.5 \times 60$ or $2.5 \times 0.6$ or for<br>$1.5$ with no units2ii(A) $150$ (cm) or $1.5$ m2M1 for $2.5 \times 60$ or $2.5 \times 0.6$ or for<br>$1.5$ with no units2ii(A) $150$ (cm) or $1.5$ m2M1 for $2.5 \times 60$ or $2.5 \times 0.6$ or for<br>$1.5$ with no units2ii(A) $150$ (cm) or $1.5$ m2M1 for $2.5 \times 60$ or $2.5 \times 0.6$ or for<br>$1.5$ with no units4ii(A) $150$ (cm) or $1.5$ m2M1 for $2.5 \times 60$ or $2.5 \times 0.6$ or for<br>$1.5$ with no units4ii(A) $150$ (cm) or $1.5$ m2M1 for $2.5 \times 60$ or $2.5 \times 0.6$ or for<br>$1.5$ with no units4ii(A)attempt at use of cosine ruleM1<br>M1<br>A1condone 1 error in substitutionii(A)attempt at use of cosine ruleM1<br>M1<br>A1condone 1 error in substitution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 | 1     |                                                                         |       | differentiation must be used        |   |
| <b>ii</b> $y - \text{their } 4 = \text{their grad } (x - 2)$ M1or use of $y = \text{their } mx + c$ and subst<br>(2, their 4), dependent on diffn<br>seen <b>iii</b> $y - \text{their } 1 \text{ inear eqn}$<br>completion to $x = \frac{2}{3}$ (ans given)<br>f(1) = 0 or factorising to<br>$(x - 1)(6 - x)$ or $(x - 1)(x - 6)$<br>6 wwwM1or using quadratic formula<br>correctly to obtain $x = 1$ 6 <b>iii</b> $\frac{7}{2}x^2 - \frac{1}{3}x^3 - 6x$<br>value at 2 - value at 1<br>$2\frac{1}{6}$ or 2.16 to 2.17<br>$\frac{1}{2} \times \frac{4}{3} \times 4 - \text{their integral}$<br>$0.5$ o.e.M1for two terms correct; ignore $+c$<br>ft attempt at integration only6 <b>11i(A)</b> 150 (cm) or 1.5 m2M1 for 2.5 × 60 or 2.5 × 0.6 or for<br>1.5 with no units2 <b>ii(A)</b> $150 \text{ (cm) or 1.5 m}$ 2M1 for 2.5 × 60 or 2.5 × 0.6 or for<br>1.5 with no units2 <b>ii(A)</b> $150 \text{ (cm) or 1.5 m}$ 2M1 for 2.16 or 2.17 with no units4 <b>ii(A)</b> $150 \text{ (cm) or 1.5 m}$ 2M1 for 2.5 × 60 or 2.5 × 0.6 or for<br>1.5 with no units2 <b>ii(A)</b> $150 \text{ (cm) or 1.5 m}$ 2M1 for 2.5 × 60 or 2.5 × 0.6 or for<br>1.5 with no units4 <b>ii(A)</b> $150 \text{ (cm) or 1.5 m}$ 4M1 for 2.5 × 60 or 2.5 × 0.6 or for<br>1.5 with no units4 <b>ii(A)</b> $150 \text{ (cm) or 1.5 m}$ 4M1 for 2.5 × 60 or 2.5 × 0.6 or for<br>1.5 with no units4 <b>ii(A)</b> $150 \text{ (cm) or 1.5 m}$ 4M1 for 2.5 × 60 or 2.5 × 0.6 or for<br>1.5 with no units4 <b>ii(A)</b> $150 \text{ (cm) or 1.5 m}$ 4M1 for 2.5 × 60 or 2.5 × 0.6 or for<br>1.5 with no units4 <b>ii(A)</b> $2.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |       | -                                                                       |       | differentiation must be used        |   |
| iisubst $y = 0$ in their linear eqn<br>completion to $x = \frac{2}{3}$ (ans given)<br>f(1) = 0 or factorising to<br>$(x - 1)(6 - x)$ or $(x - 1)(x - 6)$ M1<br>A1or using quadratic formula<br>correctly to obtain $x = 1$ 6iii $\frac{7}{2}x^2 - \frac{1}{3}x^3 - 6x$<br>value at 2 - value at 1<br>$2\frac{1}{6}$ or 2.16 to 2.17<br>$1\frac{1}{2} \times \frac{4}{3} \times 4$ - their integral<br>$0.5$ o.e.M1<br>A1for two terms correct; ignore +c<br>ft attempt at integration only611i(A)150 (cm) or 1.5 m2M1 for 2.5 × 60 or 2.5 × 0.6 or for<br>1.5 with no units511i(A)150 (cm) or 1.5 m2M1 for 2.5 × 60 or 2.5 × 0.6 or for<br>1.5 with no units2ii(A)attempt at use of cosine ruleM1<br>A1or 2 m²4ii(A)attempt at use of cosine ruleM1<br>A1condone 1 error in substitution4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |       |                                                                         |       | or was of w - their way be and what |   |
| iisubst $y = 0$ in their linear eqn<br>completion to $x = \frac{2}{3}$ (ans given)<br>f(1) = 0 or factorising to<br>$(x - 1)(6 - x)$ or $(x - 1)(x - 6)$ M1<br>A1seen6iii $\frac{7}{2}x^2 - \frac{1}{3}x^3 - 6x$<br>value at 2 - value at 1<br>$2\frac{1}{6}$ or 2.16 to 2.17<br>$\frac{1}{2} \times \frac{4}{3} \times 4$ - their integral<br>0.5 o.e.M1<br>M1for two terms correct; ignore $+c$<br>M1<br>ft attempt at integration onlyM1<br>ft attempt at integration onlyiii $\frac{1}{2} \times \frac{4}{3} \times 4$ - their integral<br>$0.5$ o.e.M1<br>A1for 2.5 $\times$ 60 or 2.5 $\times$ 0.6 or for<br>1.5 with no units5iii150 (cm) or 1.5 m2<br>N1<br>$20000$ (cm <sup>2</sup> ) iswM1<br>A1or equivalents in m <sup>2</sup><br>or 2 m <sup>2</sup> 4ii(A)attempt at use of cosine rule<br>$20000$ (cm <sup>2</sup> ) iswM1<br>A1or 2 m <sup>2</sup> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |       | y - their  4 = their grad (x - 2)                                       | IVI I |                                     |   |
| iicompletion to $x = \frac{2}{3}$ (ans given)<br>f(1) = 0 or factorising to<br>$(x-1)(6-x)$ or $(x-1)(x-6)$ A1<br>1<br>1or using quadratic formula<br>correctly to obtain $x = 1$ 6iii $\frac{7}{2}x^2 - \frac{1}{3}x^3 - 6x$<br>value at 2 - value at 1<br>$2\frac{1}{6}$ or 2.16 to 2.17<br>$\frac{1}{2} \times \frac{4}{3} \times 4$ - their integral<br>0.5 o.e.M1<br>M1<br>A1for two terms correct; ignore $+c$<br>ft attempt at integration only611i(A)150 (cm) or 1.5 m2<br>M1<br>M1<br>A1M1 for 2.5 × 60 or 2.5 × 0.6 or for<br>1.5 with no units2i(B) $\frac{1}{2} \times 60^2 \times 2.5$ or 4500<br>$\frac{1}{2} \times 140^2 \times 2.5$ or 24 500<br>subtraction of these<br>20 000 (cm <sup>2</sup> ) iswM1<br>A1or equivalents in m <sup>2</sup><br>or 2 m <sup>2</sup> 4ii(A)attempt at use of cosine rule<br>$\cos EFP = \frac{3.5^2 + 2.8^2 - 1.6^2}{9.6}$ M1<br>M1condone 1 error in substitution4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |       | aubst u = 0 in their linear con                                         | N/I   | _                                   |   |
| iif(1) = 0 or factorising to<br>$(x - 1)(6 - x)$ or $(x - 1)(x - 6)$ 1<br>a<br>or using quadratic formula<br>correctly to obtain $x = 1$ 2iii $\frac{7}{2}x^2 - \frac{1}{3}x^3 - 6x$<br>value at 2 - value at 1<br>$2\frac{1}{6}$ or 2.16 to 2.17<br>$\frac{1}{2} \times \frac{4}{3} \times 4$ - their integral<br>0.5 o.e.M1<br>M1<br>A1for two terms correct; ignore $+c$<br>ft attempt at integration only211i(A)150 (cm) or 1.5 m2<br>M1<br>A1M1 for 2.5 × 60 or 2.5 × 0.6 or for<br>1.5 with no units2i(B) $\frac{1}{2} \times 60^2 \times 2.5$ or 4500<br>$\frac{1}{2} \times 140^2 \times 2.5$ or 24 500<br>subtraction of these<br>20 000 (cm <sup>2</sup> ) iswM1<br>A1or equivalents in m <sup>2</sup><br>or 2 m <sup>2</sup> 4ii(A)attempt at use of cosine rule<br>cos EFP = $\frac{3.5^2 + 2.8^2 - 1.6^2}{9.6}$ M1condone 1 error in substitution4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |       |                                                                         |       | seen                                | ( |
| $ \begin{array}{ c c c c c c c c } \hline & (x-1)(6-x) \text{ or } (x-1)(x-6) \\ \hline & 6 \text{ www} \\ \hline & 1 \\ \hline & 1 \\ \hline & 6 \\ \hline & 6 \\ \hline & 6 \\ \hline & 6 \\ \hline & 8 \\ \hline & 8 \\ \hline & 6 \\ \hline & 8 \\ \hline & 8 \\ \hline & 1 \\ \hline $ |    |       | 5                                                                       | AI    |                                     | 0 |
| iii $6 \text{ www}$ 112iii $\frac{7}{2}x^2 - \frac{1}{3}x^3 - 6x$<br>value at 2 - value at 1<br>$2\frac{1}{6}$ or 2.16 to 2.17<br>$\frac{1}{2} \times \frac{4}{3} \times 4$ - their integral<br>0.5 o.e.M1<br>A1for two terms correct; ignore +c<br>ft attempt at integration only111 $i(A)$ $150 \text{ (cm) or } 1.5 \text{ m}$ 2M1 for $2.5 \times 60 \text{ or } 2.5 \times 0.6 \text{ or for}$<br>$1.5 \text{ with no units}$ 211 $i(A)$ $150 \text{ (cm) or } 1.5 \text{ m}$ 2M1 for $2.5 \times 60 \text{ or } 2.5 \times 0.6 \text{ or for}$<br>$1.5 \text{ with no units}$ 2i(B) $\frac{1}{2} \times 60^2 \times 2.5 \text{ or } 24500$<br>subtraction of these<br>$20 000 \text{ (cm^2) isw}$ M1<br>A1or equivalents in m2<br>or $2 \text{ m}^2$ 4ii(A)attempt at use of cosine ruleM1<br>M1<br>condone 1 error in substitution4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | ii    | f(1) = 0 or factorising to                                              | 1     | or using quadratic formula          |   |
| iii $\frac{7}{2}x^2 - \frac{1}{3}x^3 - 6x$<br>value at 2 - value at 1<br>$2\frac{1}{6}$ or 2.16 to 2.17<br>$\frac{1}{2} \times \frac{4}{3} \times 4$ - their integral<br>0.5 o.e.M1<br>A1<br>A1for two terms correct; ignore $+c$<br>ft attempt at integration only11i(A)150 (cm) or 1.5 m2<br>A1M1 for 2.5 $\times$ 60 or 2.5 $\times$ 0.6 or for<br>1.5 with no units2i(B) $\frac{1}{2} \times 60^2 \times 2.5$ or 4500<br>$\frac{1}{2} \times 140^2 \times 2.5$ or 24 500<br>subtraction of these<br>20 000 (cm <sup>2</sup> ) iswM1<br>A1or equivalents in m <sup>2</sup><br>or 2 m <sup>2</sup> 4ii(A)attempt at use of cosine rule<br>cos EFP = $\frac{3.5^2 + 2.8^2 - 1.6^2}{0.6}$ 0.6.M1condone 1 error in substitution4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |       | (x-1)(6-x) or $(x-1)(x-6)$                                              |       | correctly to obtain $x = 1$         |   |
| $\frac{1}{2} \begin{bmatrix} \frac{1}{2}x^2 - \frac{1}{3}x^3 - 6x \\ \text{value at } 2 - \text{value at 1} \\ 2\frac{1}{6} \text{ or } 2.16 \text{ to } 2.17 \\ \frac{1}{2}x + \frac{4}{3}x + 4 - \text{their integral} \\ 0.5 \text{ o.e.} \end{bmatrix} \begin{bmatrix} M1 \\ A1 \\ M1 \\ A1 \end{bmatrix}$ ft attempt at integration only $\begin{bmatrix} 1\\2\\3\\4\\4\\4\\4\\4\\4\\4\\4\\4\\4\\4\\4\\4\\4\\4\\4\\4\\4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |       | 6 www                                                                   | 1     |                                     | 2 |
| $\frac{1}{2} \begin{bmatrix} \frac{1}{2}x^2 - \frac{1}{3}x^3 - 6x \\ \text{value at } 2 - \text{value at 1} \\ 2\frac{1}{6} \text{ or } 2.16 \text{ to } 2.17 \\ \frac{1}{2}x + \frac{4}{3}x + 4 - \text{their integral} \\ 0.5 \text{ o.e.} \end{bmatrix} \begin{bmatrix} M1 \\ A1 \\ M1 \\ A1 \end{bmatrix}$ ft attempt at integration only $\begin{bmatrix} 1\\2\\3\\4\\4\\4\\4\\4\\4\\4\\4\\4\\4\\4\\4\\4\\4\\4\\4\\4\\4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |       |                                                                         |       |                                     |   |
| Image: Value at 2 - value at 1<br>$2\frac{1}{6}$ or 2.16 to 2.17M1<br>A1<br>A1ft attempt at integration only $\frac{1}{2} \times \frac{4}{3} \times 4$ - their integral<br>$0.5$ o.e.M1<br>A1S11i(A)150 (cm) or 1.5 m2M1 for 2.5 × 60 or 2.5 × 0.6 or for<br>1.5 with no units2i(B) $\frac{1}{2} \times 60^2 \times 2.5$ or 4500<br>$\frac{1}{2} \times 140^2 \times 2.5$ or 24 500<br>subtraction of these<br>20 000 (cm <sup>2</sup> ) iswM1<br>M1<br>M1<br>A1or equivalents in m <sup>2</sup> 4ii(A)attempt at use of cosine ruleM1<br>M1<br>condone 1 error in substitution4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | iii   | $7_{r^2} 1_{r^3} 6r$                                                    | M1    | for two terms correct; ignore $+c$  |   |
| 11       i(A)       150 (cm) or 1.5 m       2       M1 for 2.5 × 60 or 2.5 × 0.6 or for 1.5 with no units       5         11       i(A)       150 (cm) or 1.5 m       2       M1 for 2.5 × 60 or 2.5 × 0.6 or for 1.5 with no units       2         i(B) $\frac{1}{2} \times 60^2 \times 2.5$ or 4500 with ratio of these 20 000 (cm <sup>2</sup> ) isw       M1 box mathematical mathmatematical mathmatical mathmatemathematical mathmatemat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |       | $\frac{-x}{2} - \frac{-x}{3} - 0x$                                      |       |                                     |   |
| $\frac{1}{2} \times \frac{4}{3} \times 4$ - their integral       M1       M1       5         11       i(A)       150 (cm) or 1.5 m       2       M1 for 2.5 × 60 or 2.5 × 0.6 or for 1.5 with no units       2         i(B) $\frac{1}{2} \times 60^2 \times 2.5$ or 4500       M1       or equivalents in m <sup>2</sup> 2         i(B) $\frac{1}{2} \times 140^2 \times 2.5$ or 24 500       M1       or equivalents in m <sup>2</sup> 4         ii(A)       attempt at use of cosine rule       M1       condone 1 error in substitution       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |       | value at 2 – value at 1                                                 | M1    | ft attempt at integration only      |   |
| $\frac{1}{2} \times \frac{4}{3} \times 4$ - their integral       M1       M1       5         11       i(A)       150 (cm) or 1.5 m       2       M1 for 2.5 × 60 or 2.5 × 0.6 or for 1.5 with no units       2         i(B) $\frac{1}{2} \times 60^2 \times 2.5$ or 4500       M1       or equivalents in m <sup>2</sup> 2         i(B) $\frac{1}{2} \times 140^2 \times 2.5$ or 24 500       M1       or equivalents in m <sup>2</sup> 4         ii(A)       attempt at use of cosine rule       M1       condone 1 error in substitution       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |       |                                                                         |       |                                     |   |
| $\frac{1}{2} \times \frac{4}{3} \times 4$ - their integral       M1       M1       5         11       i(A)       150 (cm) or 1.5 m       2       M1 for 2.5 × 60 or 2.5 × 0.6 or for 1.5 with no units       2         i(B) $\frac{1}{2} \times 60^2 \times 2.5$ or 4500       M1       or equivalents in m <sup>2</sup> 2         i(B) $\frac{1}{2} \times 140^2 \times 2.5$ or 24 500       M1       or equivalents in m <sup>2</sup> 4         ii(A)       attempt at use of cosine rule       M1       condone 1 error in substitution       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |       | 2 -  or  2.16  to  2.17                                                 | A1    |                                     |   |
| 11       i(A)       150 (cm) or 1.5 m       2       M1 for 2.5 × 60 or 2.5 × 0.6 or for 1.5 with no units       2         i(B) $\frac{1}{2} \times 60^2 \times 2.5$ or 4500       M1       or equivalents in m <sup>2</sup> 2         i(B) $\frac{1}{2} \times 60^2 \times 2.5$ or 24 500       M1       or equivalents in m <sup>2</sup> 4         ii(A)       attempt at use of cosine rule       M1       condone 1 error in substitution       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |       |                                                                         |       |                                     |   |
| 11       i(A)       150 (cm) or 1.5 m       2       M1 for 2.5 × 60 or 2.5 × 0.6 or for 1.5 with no units       2         i(B) $\frac{1}{2} \times 60^2 \times 2.5$ or 4500       M1       or equivalents in m <sup>2</sup> 2         i(B) $\frac{1}{2} \times 60^2 \times 2.5$ or 24 500       M1       or equivalents in m <sup>2</sup> 4         ii(A)       attempt at use of cosine rule       M1       condone 1 error in substitution       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |       | $\frac{1}{2} \times \frac{1}{2} \times 4$ – their integral              | M1    |                                     |   |
| Image: All state of cosine rule cos EFP = $\frac{3.5^2 + 2.8^2 - 1.6^2}{2}$ 9.6.       All state of cosine rule cos EFP = $\frac{3.5^2 + 2.8^2 - 1.6^2}{2}$ 9.6.       All state of cosine rule cos EFP = $\frac{3.5^2 + 2.8^2 - 1.6^2}{2}$ 9.6.       All cos EFP = $\frac{3.5^2 + 2.8^2 - 1.6^2}{2}$ 9.6.       All cos EFP = $\frac{3.5^2 + 2.8^2 - 1.6^2}{2}$ 9.6.       All cos EFP = $\frac{3.5^2 + 2.8^2 - 1.6^2}{2}$ 9.6.       All cos EFP = $\frac{3.5^2 + 2.8^2 - 1.6^2}{2}$ 9.6.       All cos EFP = $\frac{3.5^2 + 2.8^2 - 1.6^2}{2}$ 9.6.       All cos EFP = $\frac{3.5^2 + 2.8^2 - 1.6^2}{2}$ 9.6.       All cos EFP = $\frac{3.5^2 + 2.8^2 - 1.6^2}{2}$ 9.6.       All cos EFP = $\frac{3.5^2 + 2.8^2 - 1.6^2}{2}$ 9.6.       All cos EFP = $\frac{3.5^2 + 2.8^2 - 1.6^2}{2}$ 9.6.       All cos EFP = $\frac{3.5^2 + 2.8^2 - 1.6^2}{2}$ 9.6.       All cos EFP = $\frac{3.5^2 + 2.8^2 - 1.6^2}{2}$ 9.6.       All cos EFP = $\frac{3.5^2 + 2.8^2 - 1.6^2}{2}$ 9.6.       All cos EFP = $\frac{3.5^2 + 2.8^2 - 1.6^2}{2}$ 9.6.       All cos EFP = $\frac{3.5^2 + 2.8^2 - 1.6^2}{2}$ 9.6.       All cos EFP = $\frac{3.5^2 + 2.8^2 - 1.6^2}{2}$ 9.6.       All cos EFP = $\frac{3.5^2 + 2.8^2 - 1.6^2}{2}$ 9.6.       All cos EFP = $\frac{3.5^2 + 2.8^2 - 1.6^2}{2}$ 9.6.       All cos EFP = $\frac{3.5^2 + 2.8^2 - 1.6^2}{2}$ 9.6.       All cos EFP = $\frac{3.5^2 + 2.8^2 - 1.6^2}{2}$ 9.6.       All cos EFP = $\frac{3.5^2 + 2.8^2 - 1.6^2}{2}$ 9.6.       All cos EFP = $\frac{3.5^2 + 2.8^2 - 1.6^2}{2}$ 9.6.       All cos EFP = $\frac{3.5^2 + 2.8^2 - 1.6^2}{2}$ 9.6.       All cos EFP = $\frac{3.5^2 + 2.8^2 - 1.6^2}{2}$ 9.6.       All cos EFP = $\frac{3.5^2 + 2.8^2 - 1.6^2}{2}$ 9.6.       All cos EFP = $\frac{3.5^2 + 2.8^2 - 1.6^2}{2}$ 9.6.       All cos EFP = $\frac{3.5^2 + 2.8^2 - 1.6^2}{2}$ 9.6.       All cos EFP = $\frac{3.5^2 + 2.8^2 - 1.6^2}{2}$ 9.6.       All cos EFP = $3.5^2 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |       | 2 3                                                                     |       |                                     |   |
| $\mathbf{i}(\mathbf{B}) \begin{array}{ c c c c c } 1.5 \text{ with no units} & 1.5 \text{ with no units} & 2 \\ \mathbf{i}(\mathbf{B}) \begin{array}{ c c c } 1.2 \times 60^2 \times 2.5 \text{ or } 4500 & M1 & Or equivalents in m^2 & Or equivalent in m^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |       | 0.5 0.6.                                                                | A1    |                                     | 5 |
| $\mathbf{i}(\mathbf{B}) \begin{array}{ c c c c c } 1.5 \text{ with no units} & 1.5 \text{ with no units} & 2 \\ \mathbf{i}(\mathbf{B}) \begin{array}{ c c c } 1.2 \times 60^2 \times 2.5 \text{ or } 4500 & M1 & Or equivalents in m^2 & Or equivalent in m^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |       |                                                                         |       |                                     |   |
| $\mathbf{i}(\mathbf{B}) \begin{vmatrix} \frac{1}{2} \times 60^{2} \times 2.5 \text{ or } 4500 \\ \frac{1}{2} \times 140^{2} \times 2.5 \text{ or } 24500 \\ \text{subtraction of these} \\ 20\ 000\ (\text{cm}^{2})\ \text{isw} \end{vmatrix} \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11 | i(A)  | 150 (cm) or 1.5 m                                                       | 2     |                                     |   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |       |                                                                         |       | 1.5 with no units                   | 2 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |       |                                                                         |       | 2                                   |   |
| <b>ii</b> (A) subtraction of these 20 000 (cm <sup>2</sup> ) isw DM1 A1 or 2 m <sup>2</sup> 4<br><b>ii</b> (A) attempt at use of cosine rule M1 condone 1 error in substitution 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | i(B)  |                                                                         |       | or equivalents in m <sup>2</sup>    |   |
| <b>ii</b> (A) $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |       |                                                                         |       |                                     |   |
| <b>ii</b> (A) attempt at use of cosine rule M1 condone 1 error in substitution $\cos EFP = \frac{3.5^2 + 2.8^2 - 1.6^2}{0.6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |       |                                                                         |       | - 2                                 |   |
| $\cos \text{EFP} = \frac{3.5^2 + 2.8^2 - 1.6^2}{0.6}  \text{M}_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |       | $20\ 000\ (\text{cm}^2)\ \text{isw}$                                    | Al    | or $2 \text{ m}^2$                  | 4 |
| $\cos \text{EFP} = \frac{3.5^2 + 2.8^2 - 1.6^2}{0.6}  \text{M}_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |       |                                                                         |       |                                     |   |
| $0.00 \text{ COS EFP} = 0.000 \text{ M}_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | ii(A) | attempt at use of cosine rule                                           | M1    | condone 1 error in substitution     |   |
| $0.00 \text{ COS EFP} = 0.000 \text{ M}_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |       |                                                                         |       |                                     |   |
| 0.0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |       | $\cos \text{FEP} = \frac{3.5^2 + 2.8^2 - 1.6^2}{2.5^2 + 2.8^2 - 1.6^2}$ |       |                                     |   |
| $2 \times 2.8 \times 3.5$ <sup>1V11</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |       | $\cos EFF = \frac{1}{2 \times 2.8 \times 3.5}$ o.e.                     | M1    |                                     |   |
| 26.5 to 26.65 or 27 A1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |       | 26.5 to 26.65 or 27                                                     | A1    |                                     | 3 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |       |                                                                         |       |                                     |   |
| ii(B) 2.8 sin (their EFP) o.e. M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | ii(B) | 2.8 sin (their EFP) o.e.                                                | M1    |                                     |   |
| 1.2 to 1.3 [m] A1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | -     | 1.2 to 1.3 [m]                                                          | A1    |                                     | 2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |       |                                                                         |       |                                     |   |

| 12 | i   | $\log a + \log (b^t)$ www                                                                           | B1             | condone omission of base                |   |
|----|-----|-----------------------------------------------------------------------------------------------------|----------------|-----------------------------------------|---|
|    |     | clear use of $\log (b^t) = t \log b \operatorname{dep}$                                             | B1             | throughout question                     | 2 |
|    | ii  | (2.398), 2.477, 2.556, 2.643, 2.724<br>points plotted correctly f.t.<br>ruled line of best fit f.t. | T1<br>P1<br>1  | On correct square                       | 3 |
|    | iii | log $a = 2.31$ to 2.33<br>a = 204 to 214<br>log $b = 0.08$ approx                                   | M1<br>A1<br>M1 | ft their intercept<br>ft their gradient |   |
|    |     | b = 1.195 to 1.215                                                                                  | A1             |                                         | 4 |
|    | iv  | eg £210 million dep                                                                                 | 1              | their $\pounds a$ million               | 1 |
|    | v   | $\frac{\log 1000 - \text{their intercept}}{\log 1000 - \log 1000} \approx \frac{3 - 2.32}{0.000}$   | M1             |                                         |   |
|    |     | their gradient $0.08$<br>= 8.15 to 8.85                                                             | A1             | or B2 from trials                       | 2 |

### 4752 (C2) Concepts for Advanced Mathematics

| 1 | using Pythagoras to show that hyp.<br>of right angled isos. triangle with                                                             | M1                   | www                                                                                                                                  |   |
|---|---------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------|---|
|   | sides <i>a</i> and <i>a</i> is $\sqrt{2a}$ completion using definition of cosine                                                      | A1                   | <i>a</i> any letter or a number<br>NB answer given                                                                                   | 2 |
| 2 | $2x^{6} + 5x$ value at 2 - value at 1 131                                                                                             | M2<br>M1<br>A1       | M1 if one error<br>ft attempt at integration only                                                                                    | 4 |
| 3 | (i) 193                                                                                                                               | 2                    | M1 for 8 + 15 ++ 63                                                                                                                  |   |
|   | (ii) divergent + difference between terms increasing o.e.                                                                             | 1                    |                                                                                                                                      | 3 |
| 4 | (i) 2.4                                                                                                                               | 2                    | M1 for 43.2 ÷ 18                                                                                                                     |   |
|   | (ii) 138                                                                                                                              | 2                    | M1 for their (i) $\times \frac{180}{\pi}$ or<br>$\theta = \frac{43.2 \times 360}{36\pi}$ o.e. or for other rot<br>versions of 137.50 | 4 |
| 5 | (i)sketch of cos <i>x</i> ; one cycle,<br>sketch of cos2 <i>x</i> ; two cycles,<br>Both axes scaled correctly                         | 1<br>1<br>D1         |                                                                                                                                      |   |
|   | (ii) (1-way) stretch parallel to <i>y</i> axis sf 3                                                                                   | 1<br>D1              |                                                                                                                                      | 5 |
| 6 | $y' = 3x^2 - 12x - 15$<br>use of $y' = 0$ , s.o.i. ft<br>x = 5, -1 c.a.o.                                                             | M1<br>M1<br>A1<br>A1 | for two terms correct                                                                                                                |   |
|   | x < -1 or $x > 5$ f.t.                                                                                                                | A1<br>A1             |                                                                                                                                      | 5 |
| 7 | use of $\cos^2 \theta = 1 - \sin^2 \theta$<br>at least one correct interim step in<br>obtaining $4 \sin^2 \theta - \sin \theta = 0$ . | M1<br>M1             | NB answer given                                                                                                                      |   |
|   | <i>θ</i> = 0 and 180,<br>14.(47)<br>165 - 166                                                                                         | B1<br>B1<br>B1       | r.o.t to nearest degree or better<br>-1 for extras in range                                                                          | 5 |

June 2009

| 8 | attempt to integrate $3\sqrt{x} - 5$<br>[y=] $2x^{\frac{3}{2}} - 5x + c$<br>subst of (4, 6) in their integrated eqn<br>$c = 10$ or [y=] $2x^{\frac{3}{2}} - 5x + 10$ | M1<br>A2<br>M1<br>A1 | A1 for two terms correct                                                                    | 5 |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------|---|
| 9 | (i) 7<br>(ii) 5.5 o.e.                                                                                                                                               | 1<br>2               | M1 for at least one of 5 $\log_{10}a$ or $\frac{1}{2}\log_{10}a$ or $\log_{10}a^{5.5}$ o.e. | 3 |

#### Section B

| 000 |     |                                                                                  |           |                                          |   |
|-----|-----|----------------------------------------------------------------------------------|-----------|------------------------------------------|---|
| 10  | i   | 0.6(0), 0.8(45), [1], 1.1(76)<br>1.3(0), 1.6(0)<br>points plotted correctly f.t. | T 1<br>P1 | Correct to 2 d.p. Allow 0.6, 1.3 and 1.6 |   |
|     |     | ruled line of best fit                                                           | L1        | tol. 1 mm                                | 3 |
|     | ii  | <i>b</i> = their intercept                                                       | M1        |                                          |   |
|     |     | a = their gradient                                                               | M1        |                                          |   |
|     |     | -11 ≤ b ≤ -8 <i>and</i> 21 ≤ a ≤ 23.5                                            | A1        |                                          | 3 |
|     | iii | 34 to 35 m                                                                       | 1         |                                          | 1 |
|     |     |                                                                                  |           |                                          |   |
|     | iv  | 29 = "22"logt – "9"                                                              | M1        |                                          |   |
|     |     | t = 10 <sup>"1.727</sup> "                                                       | M1        |                                          |   |
|     |     | 55 [years] approx                                                                | A1        | accept 53 to 59                          | 3 |
|     | v   | For small t the model predicts a negative height (or $h = 0$ at                  | 1         |                                          | 2 |
|     |     | approx 2.75)<br>Hence model is unsuitable                                        | D1        |                                          | 2 |

June 2009

|    |     |                                                                                                                  | 1              |                                                                       | -      |
|----|-----|------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------|--------|
| 11 | iA  | 10+20+30+40+50+60                                                                                                | B1             | or $\frac{6}{2}(2 \times 10 + 5 \times 10)$ or $\frac{6}{2}(10 + 60)$ | 1      |
|    | iВ  | correct use of AP formula with $a = 10$ and $d = 10$                                                             | M1             |                                                                       |        |
|    |     | <i>n</i> (5 + 5 <i>n</i> ) or 5 <i>n</i> ( <i>n</i> + 1) or<br>5 ( $n^2$ + <i>n</i> ) or (5 $n^2$ + 5 <i>n</i> ) | A1             |                                                                       |        |
|    | iiA | 10n <sup>2</sup> + 10n - 20700 = 0<br>45 c.a.o.<br>4                                                             | M1<br>A1<br>1  | Or better                                                             | 4<br>1 |
|    | iiВ | £2555                                                                                                            | 2              | M1 for $5(1 + 2 +2^8)$ or $5(2^9 - 1)$                                | 2      |
|    | iiC | correct use of GP formula with $a = 5$ , $r = 2$                                                                 | M1             | o.e.                                                                  |        |
|    |     | 5(2 <sup>n</sup> - 1) o.e.= 2621435                                                                              | DM1            | "S" need not be simplified                                            |        |
|    |     | $2^{n} = 524288$ www                                                                                             | M1             |                                                                       |        |
|    |     | 19 c.a.o.                                                                                                        | A1             |                                                                       | 4      |
| 12 | i   | 6.1                                                                                                              | 2              | M1 for $\frac{(3.1^2 - 7) - (3^2 - 7)}{3.1 - 3}$ o.e.                 | 2      |
|    | ii  | $\frac{((3+h)^2-7)-(3^2-7)}{h}$                                                                                  | M1             | s.o.i.                                                                |        |
|    |     | numerator = $6h + h^2$<br>6 + h                                                                                  | M1<br>A1       |                                                                       | 3      |
|    | iii | as <i>h</i> tends to 0,<br>grad. tends to 6 o.e. f.t.from "6"+h                                                  | M1<br>A1       |                                                                       | 2      |
|    | iv  | <i>y</i> − 2 = "6" ( <i>x</i> − 3) o.e.<br><i>y</i> = 6 <i>x</i> − 16                                            | M1<br>A1       | 6 may be obtained from $\frac{dy}{dx}$                                | 2      |
|    | v   | At P, $x = 16/6$ o.e. or ft<br>At Q, $x = \sqrt{7}$<br>0.021 cao                                                 | M1<br>M1<br>A1 |                                                                       | 3      |

January 2010

PMT

## 4752 (C2) Concepts for Advanced Mathematics

4752

| 1 |      | $\frac{1}{2}x^2 + 3x^{-1} + c$ o.e.                                                                                                                              | 3              | 1 for each term                                                                          | 3 |
|---|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------|---|
| 2 | (i)  | 5 with valid method                                                                                                                                              | 1              | eg sequence has period of 4 nos.                                                         |   |
|   | (ii) | 165 www                                                                                                                                                          | 2              | M1 for $13 \times (1 + 3 + 5 + 3) + 1 + 3 + 5$ or<br>for $14 \times (1 + 3 + 5 + 3) - 3$ | 3 |
| 3 |      | rt angled triangle with $\sqrt{2}$ on one side                                                                                                                   | 1              | or M1 for $\cos^2 \theta = 1 - \sin^2 \theta$ used                                       |   |
|   |      | and 3 on hyp<br>Pythag. used to obtain remaining side<br>$=\sqrt{7}$                                                                                             | 1              | A1 for $\cos \theta = \frac{\sqrt{7}}{\sqrt{9}}$                                         |   |
|   |      | $ \tan \theta = \frac{opp}{adj} = \frac{\sqrt{2}}{\sqrt{7}} \text{ o.e.} $                                                                                       | 1              | A1 for $\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\sqrt{2}}{\sqrt{7}}$ o.e.  | 3 |
| 4 |      | radius = 6.5 [cm]                                                                                                                                                | 3              | M1 for $\frac{1}{2} \times r^2 \times 0.4$ [= 8.45] o.e.                                 | 2 |
|   |      |                                                                                                                                                                  |                | and M1 for $r^2 = \frac{169}{4}$ o.e. [= 42.25]                                          | 3 |
| 5 | (i)  | sketch of correct shape with P (-0.5,2) Q (0,4) and R (2,2)                                                                                                      | 2              | 1 if Q and one other are correct                                                         |   |
|   | (ii) | sketch of correct shape with P ( $-1,0.5$ ) Q ( $0,1$ ) and R ( $4,0.5$ )                                                                                        | 2              | 1 if Q and one other are correct                                                         | 4 |
| 6 | (i)  | 205                                                                                                                                                              | 3              | M1 for AP identified with $d = 4$ and<br>M1 for $5 + 50 d$ used                          |   |
|   | (ii) | $\frac{25}{3}$ o.e.                                                                                                                                              | 2              | M1 for $r = \frac{2}{5}$ o.e.                                                            | 5 |
| 7 | (i)  | $\frac{\sin A}{5.6} = \frac{\sin 79}{8.4}$ s.o.i.                                                                                                                | M1             |                                                                                          |   |
|   |      | 5.6 8.4<br>[A =] 40.87 to 41                                                                                                                                     | A1             |                                                                                          |   |
|   | (ii) | $[BC2 =] 5.62 + 7.82 - 2 \times 5.6 \times 7.8 \times cos ("180-79") = 108.8 to 108.9 [BC =] 10.4()$                                                             | M1<br>A1<br>A1 |                                                                                          | 5 |
| 8 |      | $y' = 3x^{-\frac{1}{2}}$                                                                                                                                         | M1             | condone if unsimplified                                                                  |   |
|   |      | <sup>3</sup> / <sub>4</sub> when $x = 16$<br>y = 24 when $x = 16y -$ their 24 = their <sup>3</sup> / <sub>4</sub> ( $x - 16$ )<br>y - 24 = 3/4 ( $x - 16$ ) o.e. | A1<br>B1<br>M1 | dependent on $\frac{dy}{dx}$ used for <i>m</i>                                           |   |
|   |      | , <u> </u>                                                                                                                                                       | A1             | dx                                                                                       | 5 |

7

| 4752 | 2     | Marl                                                                      | < Sche   |                                                                | 2010 |
|------|-------|---------------------------------------------------------------------------|----------|----------------------------------------------------------------|------|
| 9    | (i)   |                                                                           | G1       | for curve of correct shape in both quadrants                   |      |
|      |       |                                                                           | DG1      | must go through $(0, 1)$ shown                                 |      |
|      | (**)  | $2x + 1 = \frac{\log 10}{2}$                                              | M1       | or M1 for $2x + 1 = \log_3 10$                                 | 5    |
|      | (ii)  | $2x + 1 = \frac{\log 10}{\log 3}$ o.e.<br>[x = 1 0.55]                    | A2       | A1 for other versions of $0.547$ or $0.548$                    | 5    |
| 10   | (i)   | [x = ] 0.55<br>$3x^2 - 6x - 9$                                            | M1       |                                                                |      |
|      |       | use of their $y' = 0$                                                     | M1       |                                                                |      |
|      |       | x = -1                                                                    | A1       |                                                                |      |
|      |       | x = 3                                                                     | A1<br>M1 |                                                                |      |
|      |       | valid method for determining nature of turning point                      |          |                                                                |      |
|      |       | max at $x = -1$ and min at $x = 3$                                        | A1       | c.a.o.                                                         | 6    |
|      | (ii)  | $x(x^2 - 3x - 9)$                                                         | M1       |                                                                |      |
|      |       | $\frac{3\pm\sqrt{45}}{2} \text{ or } (x-\frac{3}{2})^2 = 9 + \frac{9}{4}$ | M1       |                                                                |      |
|      |       | $0, \frac{3}{2} \pm \frac{\sqrt{45}}{2}$ o.e.                             | A1       |                                                                | 3    |
|      | (iii) | sketch of cubic with two turning points correct way up                    | G1       |                                                                |      |
|      |       | <i>x</i> -intercepts – negative, 0, positive shown                        | DG1      |                                                                | 2    |
| 11   | (i)   | 47.625 $[m^2]$ to 3 sf or more, with                                      | 4        | M3 for $\frac{1.5}{2} \times (2.3 + 2 + 2[2.7 + 3.3 + 4 +$     |      |
|      |       | correct method shown                                                      |          | $\frac{1}{2} \times (2.3 + 2 + 2[2.7 + 3.3 + 4 + 4])$          | 4    |
|      |       |                                                                           |          | (                                                              |      |
|      | (ii)  | 43.05                                                                     | 2        | M1 for<br>1.5 × (2.3+2.7+3.3+4+4.8+5.2+4.4+2)                  | 2    |
|      | (iii) | $-0.013x^{4}/4 + 0.16x^{3}/3 - 0.082x^{2}/2 + 2.4x$ o.e.                  | M2       | M1 for three terms correct                                     |      |
|      |       | their integral evaluated at $x = 12$ (and 0) only                         | M1       | dep on integration attempted                                   |      |
|      |       | 47.6 to 47.7                                                              | A1       |                                                                | 4    |
|      | (iv)  | 5.30 found compared with 5.2 s.o.i.                                       | 1<br>D1  |                                                                | 2    |
| 12   | (i)   | $\log P = \log a + bt  \text{www}$                                        | 1        | must be with correct equation                                  |      |
|      |       | comparison with $y = mx + c$ s.o.i.<br>intercept = $\log_{10} a$          | 1        | must be with correct equation<br>dependent on correct equation | 3    |
|      | (ii)  | [2.12, 2.21], 2.32, 2.44, 2.57, 2.69 plots ft                             | 1        |                                                                |      |
|      |       | ruled line of best fit                                                    | 1        | Between (10, 2.08) and (10, 2.12)                              | 3    |

#### January 2010

| (iii) | $0.0100 \le m < 0.0125$                                                             | B2             | M1 for $\frac{y - \text{step}}{x - \text{step}}$ |   |
|-------|-------------------------------------------------------------------------------------|----------------|--------------------------------------------------|---|
|       | $a = 10^{c}$ or $loga = c$                                                          | B1             | $1.96 \le c \le 2.02$                            |   |
|       | $P = 10^{\rm c} \times 10^{\rm mt} \text{ or } 10^{\rm mt+c}$                       | B1             | f.t. their m and a                               | 4 |
| (iv)  | use of $t = 105$<br>1.0 – 2.0 billion approx<br>unreliable since extrapolation o.e. | B1<br>B1<br>E1 |                                                  | 3 |



# GCE

## Mathematics (MEI)

Advanced GCE 4752

Concepts for Advanced Mathematics (C2)

### Mark Scheme for June 2010

#### SECTION A

| 1 |               | $[1], \frac{1}{2}, \frac{1}{3}, \frac{1}{4}$        | 2        | <b>B1</b> for [1], $\frac{1}{2}, \frac{1}{3}$                                          |
|---|---------------|-----------------------------------------------------|----------|----------------------------------------------------------------------------------------|
| 2 | (i)           | $2\frac{1}{12}$ or $\frac{25}{12}$ or $2.08(3)$     | 2        | <b>M1</b> for $\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$                  |
|   |               |                                                     |          |                                                                                        |
| 2 | ( <b>ii</b> ) | $\sum_{r=1}^{6} r(r+1)$ o.e.                        | 2        | <b>M1</b> for $[f(r) = r(r + 1)$ o.e.<br><b>M1</b> for $[a = ] 6$                      |
|   |               | <i>r</i> =2                                         |          |                                                                                        |
| 3 | (i)           | $3x^2 - 12x - 15$                                   | 2        | M1 if one term incorrect or an extra term is included.                                 |
|   |               |                                                     |          |                                                                                        |
| 3 | ( <b>ii</b> ) | Their $\frac{dy}{dx} = 0$ s.o.i.                    | M1       |                                                                                        |
|   |               | x = 5                                               | B1       |                                                                                        |
|   |               | 1                                                   | B1       |                                                                                        |
|   |               | x = -1                                              |          |                                                                                        |
| 4 |               | crossing <i>x</i> -axis at 0 and 2.5                | 1        |                                                                                        |
|   |               | min at (1.25, -6.25)                                | 1        |                                                                                        |
|   |               | crossing <i>x</i> -axis at 0 and 5                  | 1        |                                                                                        |
|   |               | min at (2.5, -18.75)                                | 1        |                                                                                        |
| 5 |               | $x - \frac{6x^{-2}}{-2}$ o.e.                       | 2        | M1 for 1 term correct                                                                  |
|   |               | 2                                                   | M1       | Dependent on at least M1 already                                                       |
|   |               | their $[5 + \frac{3}{25}] - [2 + \frac{3}{4}]$      | A1       | earned<br>i.s.w.                                                                       |
|   |               | = 2.37 o.e. c.a.o.                                  |          |                                                                                        |
| 6 |               | attempt to integrate $6x^2 + 12x^{\frac{1}{2}}$     |          |                                                                                        |
|   |               | $[y = ] 2x^3 + 8x^{1.5} + c$                        | M1<br>A2 | accept un-simplified; A1 for 2 terms                                                   |
|   |               |                                                     |          | correct                                                                                |
|   |               | Substitution of (4, 10)                             | M1       | dependent on attempted integral with                                                   |
|   |               | $[y = ] 2x^3 + 8a^{1.5} - 182 \text{ or } c = -182$ | A1       | + c term                                                                               |
| 7 |               | $3.5 \log_a x \text{ or } k = 3.5$                  | 2        | <b>B1</b> for $3 \log_a x$ or $\frac{1}{2} \log_a x$ or $\log_a x^{3\frac{1}{2}}$ seen |

June 2010

| 8 | Subst. of $1 - \cos^2 \theta$ or $1 - \sin^2 \theta$                                                                     | M1         |                                                                                                               |
|---|--------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------|
|   | $5 \cos^2 \theta = 1 \text{ or } 5 \sin^2 \theta = 4$<br>$\cos \theta = \pm \sqrt{\text{their } \frac{1}{5}} \text{ or}$ | A1<br>M1   |                                                                                                               |
|   | $\sin \theta = \pm \sqrt{\text{their} \frac{4}{5}}$ o.e.                                                                 |            |                                                                                                               |
|   | 63.4, 116.6, 243.4, 296.6                                                                                                | B2         | Accept to nearest degree or better;<br><b>B1</b> for 2 correct (ignore any extra values in range).            |
| 9 | log 18 = log a + n log 3 and $log 6 = log a + n log 2$ $log 18 - log 6 = n (log 3 - log 2)$                              | M1*<br>DM1 | or $18 = a \times 3^{n} \underline{\text{and}}$<br>$6 = a \times 2^{n}$<br>$3 = \left(\frac{3}{2}\right)^{n}$ |
|   | n = 2.71 to 2 d.p. c.a.o.                                                                                                | A1         | $n = \frac{\log 3}{\log 1.5} = 2.71$ c.a.o.                                                                   |
|   | $\log 6 = \log a + 2.70951\log 2$ o.e.<br>a = 0.92 to 2 d.p. c.a.o.                                                      | M1<br>A1   | $6 = a \times 2^{2.70951}$ o.e.<br>= 0.92 c.a.o.                                                              |

**Mark Scheme** 

Section A Total: 36

SECTION B

4752

|   |                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---|----------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | (i)            |                                                      | M1                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |                | when $x = 2$ , $\frac{dy}{dx} = 32$ s.o.i.           | A1                                                                                                                                                                                                                                                                                                                                                                                         | i.s.w.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   |                | when $x = 2$ , $y = 16$ s.o.i.                       | B1                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |                | y = 32x - 48 c.a.o.                                  | A1                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0 | ( <b>ii</b> )  | 34.481                                               | 2                                                                                                                                                                                                                                                                                                                                                                                          | <b>M1</b> for $\frac{2.1^4 - 2^4}{0.1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   |                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0 | (iiii)         | $16 + 32h + 24h^2 + 8h^3 + h^4$ c a o                | 3                                                                                                                                                                                                                                                                                                                                                                                          | <b>B2</b> for 4 terms correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| v | ` ´            |                                                      | C                                                                                                                                                                                                                                                                                                                                                                                          | <b>B1</b> for 3 terms correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | (11)           |                                                      |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0 | (iiii)         | $32 + 24h + 8h^2 + h^3$ or ft                        | 2                                                                                                                                                                                                                                                                                                                                                                                          | <b>B1</b> if one error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| U |                | 32 + 24n + 6n + n of R                               | 4                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0 |                | $a_{2} h \rightarrow 0$ magnet $a_{2}$ their 22 from | 1                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| U |                |                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | $(\mathbf{C})$ | (III) (B)                                            |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |                |                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |                |                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |                | gradient of chord                                    |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | 0              | 0 (ii)<br>0 (iii)<br>(A)<br>0 (iii)<br>(B)           | <b>0</b> (i) $\frac{dy}{dx} = 4x^3$<br>when $x = 2$ , $\frac{dy}{dx} = 32$ s.o.i.<br>when $x = 2$ , $y = 16$ s.o.i.<br>y = 32x - 48 c.a.o.<br><b>0</b> (ii) $34.481$<br><b>0</b> (iii) $16 + 32h + 24h^2 + 8h^3 + h^4$ c.a.o.<br>(A) $16 + 32h + 24h^2 + 8h^3 + h^4$ c.a.o.<br>(B) $32 + 24h + 8h^2 + h^3$ or ft<br>(B) $32 + 24h + 8h^2 + h^3$ or ft<br>(B) $32 + 24h + 8h^2 + h^3$ or ft | 0       (i) $\frac{dy}{dx} = 4x^3$<br>when $x = 2$ , $\frac{dy}{dx} = 32$ s.o.i.       M1         when $x = 2$ , $y = 16$ s.o.i.       B1 $y = 32x - 48$ c.a.o.       A1         0       (ii) $34.481$ 2         0       (iii) $16 + 32h + 24h^2 + 8h^3 + h^4$ c.a.o.       3         0       (iii) $32 + 24h + 8h^2 + h^3$ or ft       2         0       (iii) $32 + 24h + 8h^2 + h^3$ or ft       1         0       (iii) $as h \rightarrow 0$ , result $\rightarrow$ their 32 from       1         (C)       (iii) (B)       gradient of tangent is limit of       1 |

| 11 | (a)         | $10.6^2 + 9.2^2 - 2 \times 10.6 \times 9.2 \times \cos 68^\circ$                                           | <b>M1</b>  |                                                                      |
|----|-------------|------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------|
|    |             | 0.e.                                                                                                       |            |                                                                      |
|    |             | QR = 11.1(3)                                                                                               | A1         |                                                                      |
|    |             | $\frac{\sin 68}{\text{their QR}} = \frac{\sin Q}{9.2} \text{ or } \frac{\sin R}{10.6} \text{ o.e.}$        | M1         | Or correct use of Cosine Rule                                        |
|    |             | $Q = 50.01^{\circ} \text{ or } R = 61.98^{\circ}$                                                          | A1         | 2 s.f. or better                                                     |
|    |             | bearing = $174.9$ to $175^{\circ}$                                                                         | <b>B</b> 1 |                                                                      |
| 11 | (b)<br>(i)  | (A) $\frac{1}{2} \times 80^2 \times \frac{2\pi}{3}$                                                        | M1         |                                                                      |
|    | (1)         | $= \frac{6400\pi}{3}$                                                                                      | A1         | 6702.() to 2 s.f. or more                                            |
| 11 | (b)<br>(ii) | $DC = 80 \sin(\frac{\pi}{3}) = 80 \frac{\sqrt{3}}{2}$                                                      | <b>B1</b>  | both steps required                                                  |
|    |             | Area = $\frac{1}{2}$ ×their DA×40 $\sqrt{3}$<br>or $\frac{1}{2}$ ×40 $\sqrt{3}$ ×80×sin(their DCA)<br>o.e. | M1         | s.o.i.                                                               |
|    |             | area of triangle = $800\sqrt{3}$ or 1385.64 to 3s.f. or more                                               | A1         |                                                                      |
| 11 | <b>(b)</b>  | area of $\frac{1}{4}$ circle = $\frac{1}{2} \times \frac{\pi}{2} \times (40\sqrt{3})^2$                    | M1         | [=3769.9]                                                            |
|    | (iii)       | o.e.                                                                                                       | M1         | i.e. their(b) (i) + their (b) (ii) – their $\frac{1}{4}$ circle o.e. |
|    |             | "6702" + "1385.6" – "3769.9"                                                                               | A1         | $933\frac{1}{3}\pi + 800\sqrt{3}$                                    |
|    |             | = 4300 to 4320                                                                                             |            |                                                                      |

| 12 | (i)                | 1024                                               | 2         | <b>M1</b> for number of buds = $2^{10}$ s.o.i.        |
|----|--------------------|----------------------------------------------------|-----------|-------------------------------------------------------|
| 14 |                    | 1024                                               | 4         | <b>WIT</b> for number of buds $-2$ s.o.f.             |
| 10 | (A)                | 2047                                               | •         |                                                       |
| 12 | (i)                | 2047                                               | 2         | <b>M1</b> for $1+2+4+\ldots 2^{10}$ or for $2^{11}-1$ |
|    | <b>(B)</b>         |                                                    |           | or (their $1024$ ) + $512 + 256 + + 1$                |
| 12 | ( <b>ii</b> )      | no. of nodes = $1 + 2 + + 2^{n-1}$ s.o.i.          | 1         | no. of leaves = $7 + 14 + + 7 \times 2^{n-1}$         |
|    | (A)                |                                                    |           |                                                       |
|    |                    | $7 \times (2^n - 1)$                               |           |                                                       |
|    |                    | $\frac{1}{2-1}$                                    | 1         |                                                       |
| 12 | (ii)               | $7(2^n - 1) > 200\ 000$                            | M1        |                                                       |
|    | $(\mathbf{B})$     |                                                    |           |                                                       |
|    | $(\boldsymbol{D})$ |                                                    |           |                                                       |
|    |                    |                                                    |           |                                                       |
|    |                    |                                                    |           |                                                       |
|    |                    |                                                    |           |                                                       |
|    |                    | $2^n > \frac{200000}{7} + 1$ or $\frac{200007}{7}$ | <b>M1</b> | or $\log 7 + \log 2^n > \log 200\ 007$                |
|    |                    |                                                    |           |                                                       |
|    |                    |                                                    |           |                                                       |
|    |                    |                                                    |           |                                                       |
|    |                    | $n \log 2 > \log(\frac{200007}{7})$ and            | <b>M1</b> |                                                       |
|    |                    | 1                                                  |           |                                                       |
|    |                    | completion to given ans                            |           |                                                       |
|    |                    |                                                    | D1        |                                                       |
|    |                    | [n =] 15  c.a.o.                                   | <b>B1</b> |                                                       |
|    |                    |                                                    |           |                                                       |

Section B Total: 36





## **Mathematics (MEI)**

Advanced Subsidiary GCE Unit **4752:** Concepts for Advanced Mathematics

## Mark Scheme for January 2011

#### 4752

January 2011

#### SECTION A

| 1 | 11.4 o.e.                                                                                                                           | 2                          | <b>M1</b> for 12/3 + 12/4 + 12/5 + 12/6 o.e.                                                                                                                                     | M0 unless four terms summed                                                                                                                                                                                                                                                                         |
|---|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | $\frac{1}{2}x^6 + 4x^{\frac{1}{2}} + c$                                                                                             | 4                          | <b>B1</b> for $\frac{1}{2}x^6$ , <b>M1</b> for $kx^{\frac{1}{2}}$ , <b>A1</b> for $k = 4$<br>or $\frac{4}{1}$ , <b>B1</b> for $+ c$ dependent on at least<br>one power increased | allow $\frac{3}{6} x^6$ isw,                                                                                                                                                                                                                                                                        |
| 3 | $\frac{1}{2} \times 1.5 \times (0.6 + 0.7 + 2(2.3 + 3.1 + 2.8 + 1.8))$<br>= 15.975 rounded to 2 s.f. or more                        | M2<br>A1                   | M1 if one error<br>or M2 for sum of 5 unsimplified<br>individual trapezia:<br>2.175, 4.05, 4.425, 3.45, 1.875                                                                    | basic shape of formula must be correct. Must be 5<br>strips. <b>M0</b> if pair of brackets omitted or $h = 7.5$ or 1.<br>allow recovery of brackets omitted to obtain correct<br>answer.<br><b>M0</b> for other than 5 trapezia<br>isw only if 15.975 clearly identified as cross-sectional<br>area |
| 4 | (i) (3, 15)                                                                                                                         | B2                         | <b>B1</b> for each coordinate                                                                                                                                                    | s.c. <b>B0</b> for (3, 5)                                                                                                                                                                                                                                                                           |
| 4 | (ii) (1.5, 5)                                                                                                                       | B2                         | <b>B1</b> for each coordinate                                                                                                                                                    | s.c. <b>B0</b> for (3, 5)                                                                                                                                                                                                                                                                           |
| 5 | $ar = 6 \text{ and } ar^{4} = -48$<br>r = -2<br>tenth term = 1536<br>$\frac{-3(1-(-2)^{n})}{1-(-2)} \text{ o.e.}$<br>$(-2)^{n} - 1$ | M1<br>M1<br>A1<br>M1<br>A1 | <b>B2</b> for $r = -2$ www<br><b>B3</b> for 1536 www<br>allow <b>M1</b> for $a = 6$ ÷their $r$ and<br>substitution in GP formula with their $a$<br>and $r$<br>c.a.o.             | ignore incorrect lettering such as d =-2<br>condone the omission of the brackets round "-2" in the<br>numerator and / or the denominator                                                                                                                                                            |

January 2011

| - |                                                     |           |                                                                        |                                                                |
|---|-----------------------------------------------------|-----------|------------------------------------------------------------------------|----------------------------------------------------------------|
| 6 | a+2d = 24 and $a + 9d = 3$                          | <b>M1</b> |                                                                        |                                                                |
|   |                                                     | A1        |                                                                        |                                                                |
|   | d = -3; a = 30                                      | A1        | if <b>M0</b> , <b>B2</b> for either, <b>B3</b> for both                | do not award <b>B2</b> or <b>B3</b> if values clearly obtained |
|   |                                                     |           |                                                                        | fortuitously                                                   |
|   | $S_{50} - S_{20}$                                   | <b>M1</b> |                                                                        |                                                                |
|   | 530 520                                             |           | ft their $a$ and $d$ ;                                                 | $S_{50} = -2175; S_{20} = 30$                                  |
|   |                                                     |           |                                                                        |                                                                |
|   | 2205                                                |           | <b>M1</b> for $S_{30} = \frac{1}{2}(u_{21} + u_{50})$ o.e.             | $u_{21} = 30 - 20 \times 3 = -30$                              |
|   | -2205 cao                                           | A1        | <b>WI</b> 101 $S_{30} - 2(u_{21} + u_{50})$ 0.e.                       | $u_{50} = 30 - 49 \times 3 = -117$                             |
|   |                                                     |           |                                                                        |                                                                |
|   |                                                     |           | <b>B2</b> for -2205 www                                                |                                                                |
| 7 | (i) $17 \log_{10} x$ or $\log_{10} x^{17}$          | <b>B2</b> | <b>M1</b> for $5\log_{10} x$ or $12 \log_{10} x$ or $\log_{10} x^{12}$ | condone omission of base                                       |
|   |                                                     |           | as part of the first step                                              |                                                                |
| 7 | (ii) – <i>b</i>                                     | <b>B2</b> | <b>M1</b> for $\log_a 1 = 0$ or $\log_a a = 1$ soi                     | allow 0 - b                                                    |
|   |                                                     |           |                                                                        |                                                                |
| 8 | substitution of $\sin^2 \theta = 1 - \cos^2 \theta$ | <b>M1</b> | soi                                                                    |                                                                |
|   | $-5\cos^2\theta = \cos\theta$                       | A1        | or better                                                              |                                                                |
|   | $\theta = 90$ and 270,                              | A1        |                                                                        | if the 4 correct values are presented, ignore any extra        |
|   | 102                                                 | A1        | accept 101.5() and 258.(46)                                            | values which are outside the required range, but apply         |
|   | 258                                                 | A1        | rounded to 3 or more sf;                                               | a penalty of minus 1 for extra values in the range             |
|   | 238                                                 | AI        | *                                                                      | a penalty of minus 1 for extra values in the fange             |
|   |                                                     |           | if <b>M0</b> , allow <b>B1</b> for both of 90 and 270                  |                                                                |
|   | 101 and 259                                         | SC        | and <b>B1</b> for 102 and <b>B1</b> for 258 (to 3 or                   | if given in radians deduct 1 mark from total awarded           |
|   |                                                     | 1         | more sf)                                                               | (1.57, 1.77, 4.51, 4.71)                                       |
|   |                                                     |           |                                                                        |                                                                |

Mark Scheme

| 475 | 4752                                                                                              |    | Mark Scheme | January 2011                                                                                 |
|-----|---------------------------------------------------------------------------------------------------|----|-------------|----------------------------------------------------------------------------------------------|
| 9   | area sector = $\frac{1}{2} \times r^2 \times \frac{\pi}{6} \left[ = \frac{\pi r^2}{12} \right]$   | M1 | soi         |                                                                                              |
|     | area triangle = $\frac{1}{2} \times a^2 \times \sin \frac{\pi}{6} \left[ = \frac{a^2}{4} \right]$ | M1 | soi         | allow sin30                                                                                  |
|     | $\frac{\pi}{1/2a^2 \times 1/2} = \frac{1}{2} \times r^2 \times \frac{\pi}{6} \times \frac{1}{2}$  | M1 | soi         | no follow through marks available                                                            |
|     | $\frac{a^2}{4} = \frac{\pi r^2}{24}$ o.e. and completion to given answer                          | A1 |             | at least one correct intermediate step required, and no wrong working to obtain given answer |

Section A Total: 36

January 2011

#### (i) eqn of AB is y = 3x + 1 o.e. SC3 for verifying that A, B and C are collinear and **M1** 10 that C also lies on the curve or equiv in y: $y = 4\left(\frac{y-1}{3}\right)^2$ **M1** their "3x + 1" = $4x^2$ **SC2** for verifying that A, B and C are collinear by showing that gradient of AB = AC (for example) or or rearranging and deriving roots y = 4showing C lies on AB or $\frac{1}{4}$ solely verifying that C lies on the curve scores 0 (4x + 1) (x - 1) = 0 o.e. so x = -1/4**M1** condone verification by showing lhs = rhs o.e. at C, x = -1/4, $y = 4 \times (-1/4)^2$ or $3 \times$ **A1** or $y = \frac{1}{4}$ implies $x = \pm \frac{1}{4}$ so at C $x = -\frac{1}{4}$ (-1/4) + 1[=1/4 as required]**M1** 10 (ii) y' = 8x**A1** at A y' = 8eqn of tgt at A $y - 4 = \text{their}^{*}8''(x - 1)$ **M1** ft their gradient gradient must follow from evaluation of $\overline{ax}$ A1 y = 8x - 4condone unsimplified versions of y = 8x - 4NB if m = -2 obtained from given **M1** at C $y' = 8 \times -1/4$ [=-2] dependent on award of first M1 answer or only showing that $(-\frac{1}{4}, \frac{1}{4})$ A1 $y - \frac{1}{4} = -2(x - (-\frac{1}{4}))$ or other SC2 if equation of tangent and curve solved lies on given line $y = -2x - \frac{1}{4}$ then 0 unsimplified equivalent to obtain simultaneously to correctly show repeated root marks. given result. allow correct verification that $(-\frac{1}{4},\frac{1}{4})$ lies on given line (iii) their "8x - 4" = $-2x - \frac{1}{4}$ 10 **M1** or $\frac{y+4}{8} = \frac{y+\frac{1}{4}}{-2}$ o.e. **A1** y = -1 www [x = 3/8]

4

### SECTION B

| 4752 |                                                                                          |           | Mark Scheme                                                                                                  | January 2011                                                                                                                                                     |
|------|------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11   | (i) $\frac{x^4}{4} - x^3 - \frac{x^2}{2} + 3x$                                           | M2        | M1 if at least two terms correct                                                                             | ignore + c                                                                                                                                                       |
|      | their integral at $3 -$ their integral at $1 = -2.25 - 1.75$                             | M1        | dependent on integration attempted                                                                           | M0 for evaluation of $x^3 - 3x^2 - x + 3$ or of differentiated version                                                                                           |
|      | =-4 isw                                                                                  | A1        |                                                                                                              |                                                                                                                                                                  |
|      | represents area between curve and $x$ axis between $x = 1$ and 3                         | <b>B1</b> |                                                                                                              | <b>B0</b> for area <i>under</i> or above curve between $x = 1$ and 3                                                                                             |
|      | negative since below <i>x</i> -axis                                                      | B1        |                                                                                                              |                                                                                                                                                                  |
| 11   | (ii) $y' = 3x^2 - 6x - 1$<br>their $y' = 0$ soi                                          | M1<br>M1  | dependent on differentiation attempted                                                                       |                                                                                                                                                                  |
|      | $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ with $a = 3, b = -$                             | M1        | or $3(x-1)^2 - 4 = 0$ or better                                                                              | no follow through; NB $6 \pm \sqrt{48}$ or better stated without                                                                                                 |
|      | 6 and $c = -1$ isw<br>$x = \frac{6 \pm \sqrt{48}}{6}$ or better as final answer          | A1        | eg A1 for $1 \pm \frac{2}{3}\sqrt{3}$                                                                        | working implies use of correct method                                                                                                                            |
|      | $\frac{6-\sqrt{48}}{6} < x < \frac{6+\sqrt{48}}{6}$ or ft their                          | B1        | allow $\leq$ instead of $<$                                                                                  | A0 for incorrect simplification, eg $1 \pm \sqrt{48}$                                                                                                            |
|      | 6 6<br>final answer                                                                      |           |                                                                                                              | allow <b>B1</b> if <i>both</i> inequalities are stated separately and it's clear that both apply allow <b>B1</b> if the terms and the signs are in reverse order |
| 12   | (i) 50% of 25 000 is 12 500 and the<br>population [in 2005] is 12 000 [so<br>consistent] | B1        | or 12 000 is 48% of 25 000 so less than<br>50%[ so consistent]                                               |                                                                                                                                                                  |
| 12   | (ii) $\log_{10} P = \log_{10} a - kt$ or<br>$\log_{10} \overline{a} = -kt$ o.e. www      | B2        | condone omission of base; <b>M1</b> for<br>$\log_{10} P = \log_{10} a + \log_{10} 10^{-kt}$ or better<br>www |                                                                                                                                                                  |

PMT

| 475 | 4752                                                                                                                                           |                | Mark Scheme                                                                                                                                              | January 2011                                                                                                                                                                 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12  | (iii) 4.27, 4.21, 4.13, 4.08<br>plots<br>ruled line of best fit drawn                                                                          | B1<br>B1<br>B1 | accept 4.273, 4.2108, 4.130,<br>4.079 rounded to 2 or more dp<br>1 mm tolerance<br>ft their values if at least 4 correct values<br>are correctly plotted | f.t. if at least two calculated values correct<br>must have at least one point on or above and at least<br>one point on or below the line and must cover<br>$0 \le t \le 25$ |
| 12  | (iv) $a = 25000$ to 25400<br>$0.01 \le k \le 0.014$<br>$P = a \times 10^{-kt}$ or $P = 10^{\log a - kt}$ with<br>values in acceptable ranges   | B1<br>B2<br>B1 | allow $10^{4.4}$<br><b>M1</b> for $-k = \Delta x$ using values from table<br>or graph; condone $+k$<br><b>B0</b> if left in logarithmic form             | M1 for a correct first step in solving a pair of valid<br>equations in either form<br>A1 for k<br>A1 for a<br>A1 for $P = a \times 10^{-kt}$                                 |
| 12  | (v) $P = a \times 10^{-35k}$<br>8600 to 9000<br>comparing their value with 9375 o.e.<br>and reaching the correct conclusion<br>for their value | M1<br>A1<br>A1 | T heir <i>a</i> and <i>k</i><br>f.t.                                                                                                                     | allow $\log P = \log a - 35k$                                                                                                                                                |

PMT

Section B Total: 36





# Mathematics (MEI)

Advanced Subsidiary GCE

Unit 4752: Concepts for Advanced Mathematics

## Mark Scheme for June 2011

PMT

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

| June | 2011 |
|------|------|
|------|------|

| SECTION A | ١ |
|-----------|---|
|-----------|---|

| DLC | IION A                                                          |           |                                                           |                                                                                          |
|-----|-----------------------------------------------------------------|-----------|-----------------------------------------------------------|------------------------------------------------------------------------------------------|
| 1   | $\frac{1}{2}x^4 + 3x$                                           | <b>M1</b> | accept unsimplified                                       | ignore + c                                                                               |
|     | F[5] - F[2]                                                     | <b>M1</b> | at least one term correctly integrated,                   | condone omission of brackets                                                             |
|     | [=327.5 - 14]                                                   |           | may be implied by A1                                      |                                                                                          |
|     | =313.5 o.e.                                                     | A1        |                                                           | 313.5 unsupported scores 0                                                               |
|     |                                                                 |           |                                                           |                                                                                          |
| 2   | 0.05, 2000, $1.25 \times 10^{-6}$ or                            | <b>B2</b> | <b>B1</b> for two correct                                 |                                                                                          |
|     | $\frac{1}{20}$ , 2000, $\frac{1}{800000}$ o.e.                  |           |                                                           |                                                                                          |
|     | divergent                                                       | B1        | allow "alternate terms tend to zero and to infinity" o.e. | do <i>not</i> allow "oscillating", "getting bigger and smaller", "getting further apart" |
| 3   | (i) <i>m</i> =                                                  | <b>M1</b> |                                                           | no marks for use of Chain Rule or any other attempt to                                   |
|     |                                                                 |           |                                                           | differentiate                                                                            |
|     | $\frac{\sqrt{1+2\times4.1}-\sqrt{1+2\times4}}{4.1-4}$ s.o.i     |           |                                                           |                                                                                          |
|     |                                                                 | <b>M1</b> |                                                           | <b>SC2</b> for 0.33 appearing only embedded in equation                                  |
|     | grad = $\frac{\sqrt{9.2} - \sqrt{9}}{4.1 - 4}$ s.o.i            |           |                                                           | of chord                                                                                 |
|     | 4.1-4                                                           | A1        |                                                           |                                                                                          |
| -   | 0.3315 cao                                                      |           |                                                           |                                                                                          |
| 3   | (ii) selection of value in (4, 4.1) and 4                       | <b>M1</b> |                                                           | allow selection of 4 and value in (3.9, 4)                                               |
|     | or of two values in [3.9, 4.1] centred                          |           |                                                           |                                                                                          |
|     | on 4                                                            |           |                                                           |                                                                                          |
|     | answer closer to $1/2$ then $0.2215()$                          | A 1       |                                                           |                                                                                          |
| 4   | answer closer to 1/3 than 0.3315()<br>$6 = ab$ and $3.6 = ab^2$ | A1<br>M1  | log6 - logg + logh grid                                   |                                                                                          |
| 4   | 0 - uv and $3.0 = uv$                                           | IVII      | log6 = loga + logb and<br>log3.6 = loga + logb2           |                                                                                          |
|     |                                                                 |           | 10g3.0 - 10ga + 10gb                                      |                                                                                          |
|     | $a = 10, \ b = 0.6$ c.a.o.                                      | A2        | A1 each;                                                  |                                                                                          |
|     | u = 10, v = 0.0 c.u.o.                                          | 114       | if <b>M0</b> then <b>B3</b> for both, <b>B1</b> for one   |                                                                                          |
|     |                                                                 |           |                                                           |                                                                                          |
|     |                                                                 |           |                                                           |                                                                                          |

| 4752 |                                                                                                                                                                                                                                                         | Mark Scheme                 |                                                                                                                                                                                                          | June 2011                                                                                                                                                   |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5    | $\left[\frac{dy}{dx} = \right] 32x^{3} \text{ c.a.o.}$<br>substitution of $x = \frac{1}{2}$ in their $\frac{dy}{dx}$<br>grad normal = $\frac{-1}{their4}$<br>when $x = \frac{1}{2}$ , $y = 4\frac{1}{2}$ o.e.                                           | M1<br>M1<br>M1<br>B1        | [= 4]                                                                                                                                                                                                    | must see $kx^3$<br>their 4 must be obtained by calculus                                                                                                     |
|      | $y - 4\frac{1}{2} = -\frac{1}{4}(x - \frac{1}{2})$ i.s.w                                                                                                                                                                                                | A1                          | $y = -\frac{1}{4}x + 4\frac{5}{8}$ o.e.                                                                                                                                                                  |                                                                                                                                                             |
| 6    | $\frac{dy}{dx} = 6x^{\frac{1}{2}} - 2$<br>$y = kx^{\frac{3}{2}} - 2x + c \text{ o.e.}$<br>$y = 4x^{\frac{3}{2}} - 2x + c \text{ o.e.}$<br>correct substitution of $x = 9$ and $y = 4$<br>in their equation of curve<br>$y = 4x^{\frac{3}{2}} - 2x - 86$ | M2<br>A1<br>M1<br>dep<br>A1 | <b>M1</b> for $k x^{\frac{3}{2}}$ and <b>M1</b> for $-2x + c$<br>dependent on at least <b>M1</b> already<br>awarded<br>allow <b>A1</b> for $c = -86$ i.s.w. if simplified<br>equation for y seen earlier | $x^{\frac{1}{6}}$ is a mistake, not a misread<br>"y =" need not be stated at this point, but must be seen<br>at some point for full marks<br>must see "+ c" |

PMT

| 47 | 52 |
|----|----|
|----|----|

| 4752 |                                                                                                                                                       | Mark Scheme          |                                                                     | June 2011                                                                                                                      |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 7    | $\frac{\sin \theta}{\cos \theta} = 2\sin \theta$ $2\cos \theta - 1 = 0 \text{ and } \sin \theta = 0$ $[\theta = ] 0, 180, 360,$ $[\theta = ] 60, 300$ | M1<br>A1<br>B1<br>B1 | <i>may</i> be implied by $2\cos\theta - 1 = 0$ or better            | or, if to advantage of candidate<br>B4 for all 5 correct<br>B3 for 4 correct<br>B2 for 3 correct<br>B1 for 2 correct           |
|      | if 4 marks awarded, lose 1 mark for<br>extra values in the range, ignore extra<br>values outside the range                                            |                      |                                                                     | if extra value(s) in range, deduct one mark from total<br>do not award if values embedded in trial and<br>improvement approach |
| 8    | $\log p = \log s + \log t^n$                                                                                                                          | M1                   | or $\frac{p}{d} = t^n$                                              |                                                                                                                                |
|      | $\log p = \log s + n \log t$                                                                                                                          | M1                   | or $\frac{p}{s} = t^n$<br>$n \log t = \log\left(\frac{p}{s}\right)$ | or A2 for<br>$[n = ]\log_t \left(\frac{p}{s}\right)$ [base <i>t</i> needed ] following first M1                                |
|      | $[n =] \frac{\log p - \log s}{\log t} \text{ or } \frac{\log\left(\frac{p}{s}\right)}{\log t}$<br>[base not required]                                 | A1                   | as final answer (i.e. penalise further incorrect simplification)    | $(s)^{1-\alpha}s^{\alpha}(s)^{1-\alpha}s^{\alpha}s^{\alpha}s^{\alpha}s^{\alpha}s^{\alpha}s^{\alpha}s^{\alpha}s^{$              |
| 9    | $\log 16^{\frac{1}{2}}$ or [-] $\log 5^2$ s.o.i.                                                                                                      | M1                   |                                                                     | if $a = 10$ assumed, $x = 12$ c.a.o. scores <b>B3</b> www                                                                      |
|      | $\log(4\times75) \text{ or } \log\frac{75}{25} \text{ s.o.i.}$ $x = 12 \text{ www}$                                                                   |                      | $x = \frac{4 \times 75}{25}$ implies <b>M1M1</b>                    | no follow through                                                                                                              |
| 10   | $t_1 = -\sin\theta$                                                                                                                                   | A1<br>B1             | WWW                                                                 |                                                                                                                                |
|      | $t_2 = \sin \theta$                                                                                                                                   | B1                   | WWW                                                                 | e.g. $\sin(\theta + 360) = \sin \theta + \sin 360 = \sin \theta$ <b>B0</b>                                                     |
| C    | ion A Total: 36                                                                                                                                       |                      |                                                                     |                                                                                                                                |

Section A Total: 36

| SECTION B |  |
|-----------|--|
|-----------|--|

| 520 |                                                       |           |                                                                  | 1                                            |
|-----|-------------------------------------------------------|-----------|------------------------------------------------------------------|----------------------------------------------|
| 11  | (i) 200 - $2\pi r^2 = 2\pi rh$                        | M1        | $100 = \pi r^2 + \pi r h$                                        | sc3 for complete argument working backwards: |
|     | $h = \frac{200 - 2\pi r^2}{2\pi r}$ o.e.              |           |                                                                  | $V = 100r - \pi r^3$                         |
|     | $h = \frac{2\pi r}{2\pi r}$ o.e.                      | M1        | $100r = \pi r^3 + \pi r^2 h$                                     | $\pi r^2 h = 100r - \pi r^3$                 |
|     |                                                       |           |                                                                  | $\pi rh = 100 - \pi r^2$                     |
|     | substitution of correct <i>h</i> into $V = \pi r^2 h$ | M1        | $100r = \pi r^3 + V$                                             | $100 = \pi r h + \pi r^2$                    |
|     |                                                       |           | _                                                                | $200 = A = 2\pi rh + 2\pi r^2$               |
|     | $V = 100r - \pi r^3$ convincingly obtained            | A1        | $V = 100r - \pi r^3$                                             |                                              |
|     |                                                       |           |                                                                  | sc0 if argument is incomplete                |
|     |                                                       |           | or                                                               |                                              |
|     |                                                       |           | M1 for $h = V$                                                   |                                              |
|     |                                                       |           | <b>M1</b> for $h = \frac{V}{\pi r^2}$                            |                                              |
|     |                                                       |           |                                                                  |                                              |
|     |                                                       |           | <b>M1</b> for $200 = 2\pi r^2 + 2\pi r \times \frac{V}{\pi r^2}$ |                                              |
|     |                                                       |           |                                                                  |                                              |
|     |                                                       |           | <b>M1</b> for $200 = 2\pi r^2 + 2\frac{V}{r}$                    |                                              |
|     |                                                       |           | r                                                                |                                              |
|     |                                                       |           | <b>A1</b> for $V = 100r - \pi r^3$ convincingly                  |                                              |
|     |                                                       |           | obtained                                                         |                                              |
|     |                                                       |           |                                                                  |                                              |
| 11  | (ii) $\frac{dV}{dr} = 100 - 3\pi r^2$                 | <b>B2</b> | <b>B1</b> for each term                                          | allow 9.42() $r^2$ or better if decimalised  |
|     | dr dr                                                 |           |                                                                  |                                              |
|     | $\frac{d^2 V}{dr^2} = -6\pi r$                        |           |                                                                  |                                              |
|     | $\frac{dr^2}{dr^2} = -6\pi r$                         | <b>B1</b> |                                                                  | -18.8() <i>r</i> or better if decimalised    |
|     | u                                                     |           |                                                                  |                                              |
|     |                                                       |           |                                                                  |                                              |

| June | 2011 |  |
|------|------|--|
|------|------|--|

| 11 | (iii) their $\frac{dV}{dr} = 0$ s.o.i. | M1 | must contain <i>r</i> as the only variable                    |                                           |
|----|----------------------------------------|----|---------------------------------------------------------------|-------------------------------------------|
|    | r = 3.26 c.a.o.                        | A2 | A1 for $r = (\pm)\sqrt{\frac{100}{3\pi}}$ ; may be implied    |                                           |
|    |                                        |    | by 3.25                                                       |                                           |
|    | <i>V</i> = 217 c.a.o.                  | A1 | deduct 1 mark only in this part if answers not given to 3 sf, | there must be evidence of use of calculus |

| 12 | (i)(A) 390                                                                                           | B2        | <b>M1</b> for 500 – 11 × 10                                                                                                                                    |                                                                              |
|----|------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 12 | (i)(B)<br>$S_{24} = \frac{24}{2} (2 \times 500 + (24 - 1) \times -10)$ o.e.<br>i.s.w.                | B2        | nothing simpler than<br>$12(1000 + 23 \times -10)$ or $\frac{24}{2}(1000 - 230)$                                                                               | condone omission of final bracket or "(23)-10" if<br>recovered in later work |
|    |                                                                                                      |           | or $12(2 \times 500 - 230)$<br>if <b>B2</b> not awarded, then<br><b>M1</b> for use of a.p. formula for S <sub>24</sub> with<br>n = 24, $a = 500$ and $d = -10$ | if they write the sum out, all the terms must be listed<br>for 2 marks       |
|    | or $S_{24} = \frac{24}{2} (500 + 270)$ o.e. i.s.w.<br>[=9240] (answer given)                         |           | or <b>M1</b> for $l = 270$ s.o.i.                                                                                                                              | $12 \times (1000 - 230)$ or $12 \times 770$ on its own do not score          |
| 12 | (ii)(A) 368.33() or 368.34                                                                           | <b>B2</b> | <b>M1</b> for $460 \times 0.98^{11}$                                                                                                                           |                                                                              |
| 12 | (ii)(B)<br>$J_{20} = 310$<br>$M_{20} = 313.36(), 313.4, 313.3,$<br>313.37  or  313<br>$J_{19} = 320$ | B3        | <ul><li>B3 for all 4 values correct or</li><li>B2 for 3 values correct or</li><li>B1 for 2 values correct</li></ul>                                            | values which are clearly wrongly attributed do not score                     |
|    | $M_{19} = 319.76(), 319.8 \text{ or } 319.7$                                                         |           |                                                                                                                                                                |                                                                              |
| 12 | (ii)(C) 8837 to 8837.06                                                                              | B2        | <b>M1</b> for $S_{24} = \frac{460(1-0.98^{24})}{1-0.98}$ o.e.                                                                                                  |                                                                              |
| 12 | (ii)(D) $\frac{a(1-0.98^{24})}{(1-0.98)} = 9240$ o.e.<br>480.97 to 480.98                            | M1<br>A1  | f.t. their power of 24 from (ii)C                                                                                                                              |                                                                              |

PMT

June 2011

| 13 | (i) arc AC = $2.1 \times 1.8$                                                                                    | M1                     | 103                                                                                                                                                                                | 103° or better                                                                                                                                                    |
|----|------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | = $3.78$ c.a.o.<br>area = their $3.78 \times 5.5$<br>= 20.79 or 20.8 i.s.w.                                      | A1<br>M1<br>dep*<br>A1 | $\frac{103}{360} \times 2\pi \times 2.1$<br>dependent on first M1                                                                                                                  | 3.78 must be seen but may be embedded in area formula                                                                                                             |
| 13 | (ii) BD = $2.1 \cos (\pi - 1.8)$<br>or $2.1 \cos 1.3(4159)$<br>or $2.1 \sin 0.2(292)$ r.o.t to 1 d.p. or<br>more | M2                     | M1 for $\cos(\pi - 1.8) = \frac{BD}{2.1}$ o.e.                                                                                                                                     | M2 for BD = 2.1 cos 76.8675° or<br>2.1sin13.1324rounded to 2 or more sf<br>or M2 for CD = 2.045 r.o.t. to 3 s.f. or better and<br>BD = $\sqrt{(2.1^2 - 2.045^2)}$ |
|    | = 0.48                                                                                                           | A1                     | allow any answer which rounds to 0.48                                                                                                                                              |                                                                                                                                                                   |
| 13 | (iii) sector area = 3.969                                                                                        | M2                     | <b>M1</b> for $\frac{1}{2} \times 2.1^2 \times 1.8$                                                                                                                                | or equivalent with degrees for first two Ms N.B. $5.5 \times 3.969 = 21.8295$ so allow M2 for 21.8295                                                             |
|    | triangle area = $0.487$ to $0.491$                                                                               | M2                     | M1 for<br>$\frac{1}{2} \times 2.1 \times \text{their } 0.48 \times \sin(\pi - 1.8)$<br>or<br>$\frac{1}{2} \times \text{their } 0.48 \times 2.045.$ . r.o.t. to 3 s.f. or<br>better | may be sin 1.8 instead of sin ( $\pi$ – 1.8)<br>N.B. 5.5 × area = 2.6785 to 2.7005 so allow M2 for a value in this range                                          |
|    | 24.5                                                                                                             | A1                     | allow any answer which rounds to 24.5                                                                                                                                              |                                                                                                                                                                   |

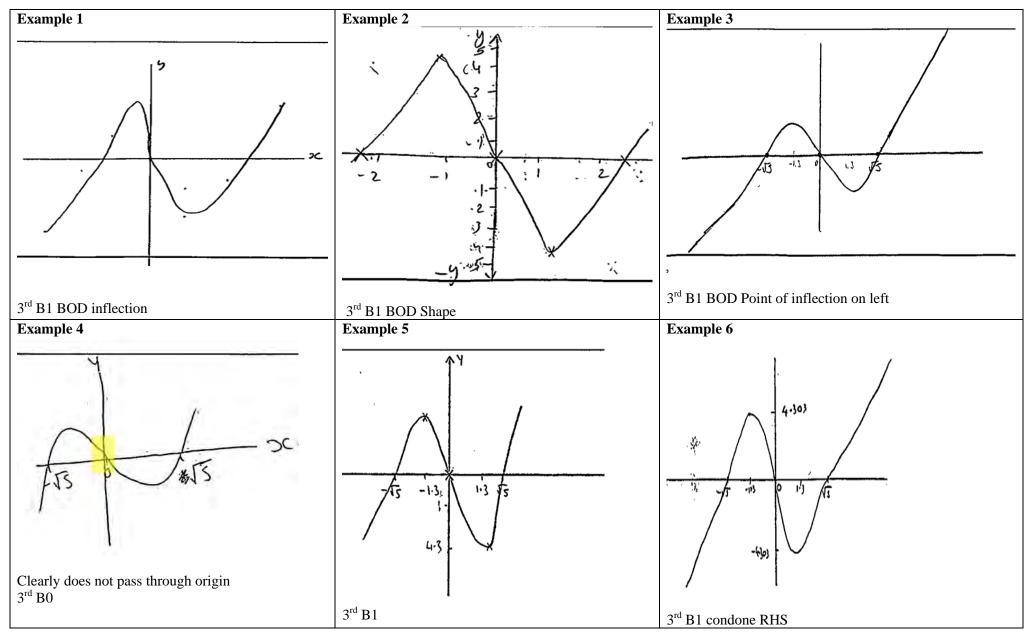
Section B Total: 36

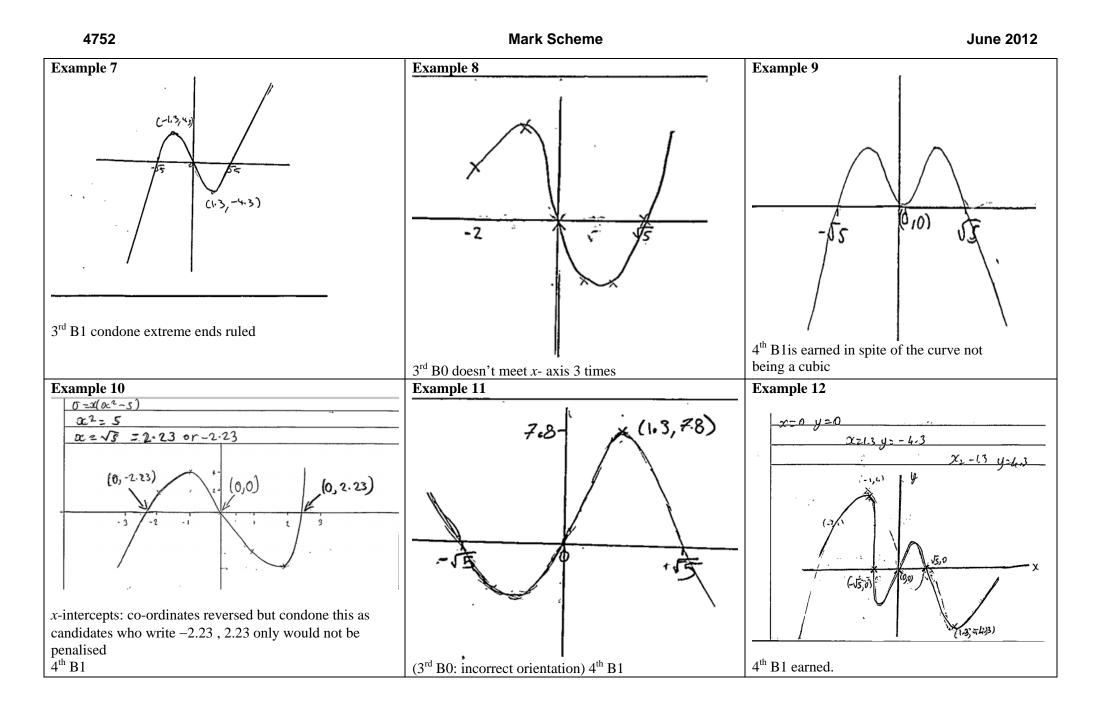
4752

| Quest  | tion | Answer                                                              | Marks              | Guidance                                                                              |                                                                                                                       |  |
|--------|------|---------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|
| 1      |      | $\frac{1}{2}x^{-\frac{1}{2}} - 3x^{-2}$ oe; isw                     | B3                 | need not be simplified<br>B2 for one term correct<br>ignore $+ c$                     | if B0 allow M1 for either $x^{1/2}$ or $x^{-1}$ seen<br>before differentiation<br>deduct one mark for extra term in x |  |
|        |      |                                                                     | [3]                | C                                                                                     |                                                                                                                       |  |
| 2      |      | (5), 8, 11, (14),isw                                                | B1                 |                                                                                       |                                                                                                                       |  |
|        |      | a = 5 and $d = 3$ soi                                               | B1                 |                                                                                       |                                                                                                                       |  |
|        |      | $S_{50} = \frac{50}{2}(2 \times 5 + (50 - 1) \times 3)$ oe          | M1                 |                                                                                       | if M0, award B2 if 3925 is obtained                                                                                   |  |
|        |      | 3925                                                                | A1<br>[ <b>4</b> ] | if M0, SC1 for use of $a = 8$ and obtaining 4075                                      | from summing individual terms or if<br>unsupported                                                                    |  |
| 3 (i)  |      | $9.8^2 + 6.4^2 - 2 \times 9.8 \times 6.4 \times \cos 53.4$          | M1                 |                                                                                       |                                                                                                                       |  |
|        |      | $9.8^2 + 6.4^2 - 74.79 [= 62.2]$                                    | M1                 | for evidence of correct order of operations<br>used; may be implied by correct answer | 6.89 implies M0<br>262.4368 implies M1 (calc in radian<br>mode), (NB √262.436=16.199)                                 |  |
|        |      | 7.887 or 7.89 or 7.9                                                | A1<br>[ <b>3</b> ] | if M0, B3 for 7.89 or more precise www                                                | NB 9.8 $\sin 53.4 = 7.87$                                                                                             |  |
| 3 (ii) | )    | $\frac{1}{2} \times 9.8 \times 7.3 \times \sin(180 - 53.4)$ oe seen | M1                 | or sin 53.4 used; may be embedded                                                     | may be split into height = $9.8 \times \sin 53.4$<br>then Area = $\frac{1}{2} \times 7.3 \times \text{height}$        |  |
|        |      | 28.716or 28.72 or 28.7 or 29 isw                                    | A1<br>[2]          | if M0, B2 for 28.7 or more precise www                                                |                                                                                                                       |  |
| 4 (i)  |      | (6,9)                                                               | 2                  | 1 for each co-ordinate                                                                | SC0 for (6, 3)                                                                                                        |  |
|        |      |                                                                     | [2]                |                                                                                       |                                                                                                                       |  |
| 4 (ii) | )    | (1.5, 3)                                                            | 2<br>[2]           | 1 for each co-ordinate                                                                | SC0 for (6, 3)                                                                                                        |  |
| 5      |      | $45 = \frac{1}{2} r^2 \times 1.6$ oe                                | M1                 | $45 = \pi r^2 \times \frac{91.673}{360}$                                              |                                                                                                                       |  |
|        |      | $r^2 = 90/1.6$ oe                                                   | M1                 |                                                                                       |                                                                                                                       |  |
|        |      | r = 7.5 or exact equivalent cao                                     | A1                 | or B3 www                                                                             | allow recovery to 7.5 if working in degrees, but A0 for (eg) 7.49                                                     |  |
|        |      | (their 7.5) × 1.6                                                   | M1                 | $2\pi \times (\text{their } r) \times \frac{91.673}{360}$                             | 12 implies M1                                                                                                         |  |
|        |      | 27                                                                  | A1                 | or B2 www                                                                             |                                                                                                                       |  |
|        |      |                                                                     | [5]                |                                                                                       |                                                                                                                       |  |

| Question | Answer                                                        | Marks              | Guidance                                                                                                          |                                                                                                  |  |
|----------|---------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|
| 6        | gradient = 3 seen                                             | B1                 | may be embedded                                                                                                   |                                                                                                  |  |
|          | $log_{10} y - 5 = (their 3)(log_{10} x - 1)$ or using (5, 17) | M1                 | or $\log_{10} y = 3 \log_{10} x + c$ and substitution<br>of (1, 5) or (5, 17) for $\log_{10} x$ and $\log_{10} y$ | condone omission of base throughout                                                              |  |
|          | $\log_{10} y = 3 \log_{10} x + 2$ oe                          | A1                 |                                                                                                                   | NB may recover from eg $Y = 3X + 2$                                                              |  |
|          | $y = 10^{3\log_{10} x+2}$ oe                                  | M1                 | or $\log_{10} y = \log_{10} x^3 + \log_{10} 100$                                                                  | or $\log_{10} \frac{y}{x^3} = 2$ or $\log_{10} y = \log_{10} 100x^3$                             |  |
|          | $y = 100x^3$                                                  | A1                 |                                                                                                                   |                                                                                                  |  |
|          |                                                               | [5]                |                                                                                                                   |                                                                                                  |  |
| 7        | $\frac{6x^{\frac{3}{2}}}{\frac{3}{2}}$                        | M1*                |                                                                                                                   |                                                                                                  |  |
|          | $4x^{\frac{3}{2}}$                                            | A1                 | may appear later                                                                                                  |                                                                                                  |  |
|          | -5x+c                                                         | B1                 | B0 if from $y = (6x^{\frac{1}{2}} - 5)x + c$                                                                      | condone "+ $c$ " not appearing until substitution                                                |  |
|          | substitution of (4, 20)                                       | M1dep*             |                                                                                                                   |                                                                                                  |  |
|          | $[y = ] 4x^{1.5} - 5x + 8 \text{ or } c = 8 \text{ isw}$      | A1<br>[ <b>5</b> ] |                                                                                                                   |                                                                                                  |  |
| 8        | 0.775397 soi                                                  | M1                 | or 44.427°                                                                                                        |                                                                                                  |  |
|          | 0.388, 1.18, 3.53, 4.32                                       | A4                 | A1 each value                                                                                                     | if any of final answers not given to<br>three sf deduct 1 mark from total A<br>marks             |  |
|          | in degrees: 22.2, 67.8, 202, 248*                             |                    | if A0 then B1 for at least two of 2.366,<br>7.058, 8.649for 2θ or all of 135.57,<br>404.427, 495.57               | *if final answers in degrees deduct 1<br>from total A marks<br>ignore extra values outside range |  |
|          |                                                               |                    |                                                                                                                   | if four correct answers in degrees or<br>radians, deduct 1 for extra values in<br>range          |  |
|          |                                                               | [5]                |                                                                                                                   |                                                                                                  |  |

| Q | uesti | on  | Answer                                                                          | Marks                               | Guidance                                                                                                                                                        |                                                                                                                                                                     |  |
|---|-------|-----|---------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 9 | (i)   |     | $\frac{1}{2} \times 0.2 \ (0 + 0 + 2(0.5 + 0.7 + 0.75 + 0.7 + 0.5))$<br>[=0.63] | M3                                  | M2 if one error, M1 if two errors<br>condone omission of zeros<br>or M3 for<br>0.05 + 0.12 + 0.145 + 0.145 + 0.12 + 0.05<br>may be unsimplified, must be summed | basic shape of formula must be correct<br>must be 6 strips<br>M0 if brackets omitted, but allow<br>recovery<br>M0 if $h = 1$ or 1.2<br>Area = 6.3 and 0.53 imply M0 |  |
|   |       |     | (their 0.63) × 50<br>31.5                                                       | M1<br>A1<br>[5]                     |                                                                                                                                                                 |                                                                                                                                                                     |  |
| 9 | (ii)  | (A) | $3.8 \times 0.2^4 - 6.8 \times 0.2^3 + 7.7 \times 0.2^2 - 4.2 \times 0.2$       | M1                                  | ±0.58032 implies M1                                                                                                                                             | condone one sign error                                                                                                                                              |  |
|   |       |     | 0.01968 cao isw                                                                 | A1<br>[2]                           | or B2 if unsupported                                                                                                                                            | allow – 0.01968                                                                                                                                                     |  |
| 9 | (ii)  | (B) | $\frac{3.8x^5}{5} - \frac{6.8x^4}{4} + \frac{7.7x^3}{3} - \frac{4.2x^2}{2} + c$ | M2                                  | M1 for two terms correct excluding $c$ condone omission of $c$                                                                                                  | accept 2.56 to 2.57 for coefficient of $x^3$ allow M1 if all signs reversed                                                                                         |  |
|   |       |     | F(0.9) [-F(0)]<br>50 × their ±F(0.9)<br>24.8 to 24.9 cao                        | M1*<br>M1dep*<br>A1<br>[ <b>5</b> ] | as long as at least M1 awarded                                                                                                                                  | NB F(0.9) = - 0.496                                                                                                                                                 |  |


| Q  | uestion | Answer                                                                                  | Marks              | Guida                                                                                 | ince                                                                                                                        |
|----|---------|-----------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 10 | (i)     | $y' = 3x^2 - 5$<br>their $y' = 0$                                                       | M1<br>M1           |                                                                                       |                                                                                                                             |
|    |         | (1.3, -4.3) cao                                                                         | A1                 | or A1 for $x = \pm \sqrt{\frac{5}{3}}$ oe soi                                         |                                                                                                                             |
|    |         | (- 1.3, 4.3) cao                                                                        | A1                 | allow if not written as co-ordinates if pairing is clear                              | ignore any work relating to second derivative                                                                               |
| 10 | (ii)    | crosses axes at (0, 0)                                                                  | [ <b>4</b> ]<br>B1 | condone <i>x</i> and <i>y</i> intercepts not written as co-ordinates; may be on graph | See examples in Appendix                                                                                                    |
|    |         | and $(\pm\sqrt{5}, 0)$                                                                  | B1                 | $\pm$ (2.23 to 2.24) implies $\pm\sqrt{5}$                                            |                                                                                                                             |
|    |         | sketch of cubic with turning points in correct quadrants and of correct orientation and | B1                 |                                                                                       | must meet the <i>x</i> -axis three times<br>B0 eg if more than 1 point of inflection                                        |
|    |         | passing through origin<br>x-intercepts $\pm\sqrt{5}$ marked                             | B1<br>[ <b>4</b> ] | may be in decimal form (±2.2)                                                         |                                                                                                                             |
| 10 | (iii)   | substitution of $x = 1$ in f'(x) = $3x^2 - 5$                                           | M1                 |                                                                                       | sight of $-2$ does not necessarily imply<br>M1: check f'(x) = $3x^2 - 5$ is correct<br>in part (i)                          |
|    |         | -2                                                                                      | A1                 |                                                                                       |                                                                                                                             |
|    |         | $y - 4 = (\text{their f } '(1)) \times (x - 1) \text{ oe}$                              | M1*                | or $-4 = -2 \times (1) + c$                                                           |                                                                                                                             |
|    |         | $-2x-2 = x^3 - 5x$ and completion to given<br>result www                                | M1dep*             |                                                                                       |                                                                                                                             |
|    |         | use of Factor theorem in $x^3 - 3x + 2$ with $-1$ or $\pm 2$                            | M1                 | or any other valid method; must be shown                                              | eg long division or comparing<br>coefficients to find $(x - 1)(x^2 + x - 2)$ or<br>$(x + 2)(x^2 - 2x + 1)$ is enough for M1 |
|    |         | x = -2 obtained correctly                                                               | A1                 |                                                                                       | with both factors correct<br>NB M0A0 for $x(x^2 - 3) = -2$ so $x = -2$<br>or $x^2 - 3 = -2$ oe                              |
|    |         |                                                                                         | [6]                |                                                                                       |                                                                                                                             |


<sup>4752</sup> 

| Q  | uesti         | on | Answer                                                                                                               | Marks              | Guida                                                   | nce                                                                                                       |
|----|---------------|----|----------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 11 | (i)           |    | ar = 6 oe<br>$\frac{a}{1-r} = 25$ oe                                                                                 | B1<br>B1           | must be in $a$ and $r$<br>must be in $a$ and $r$        |                                                                                                           |
|    |               |    | $1-r$ $25 = \frac{a}{1-\frac{6}{a}}$                                                                                 | M1                 | or $\frac{6}{r} = 25(1-r)$                              | NB assuming $a = 10$ earns M0                                                                             |
|    |               |    | $a^2 - 25a + 150$ [= 0]<br>a = 10 obtained from formula, factorising,<br>Factor theorem or completing the square     | A1<br>A1           | or $25r^2 - 25r + 6$ [= 0]<br>r = 0.4 and r = 0.6       | All signs may be reversed                                                                                 |
|    |               |    | <i>a</i> = 15                                                                                                        | A1                 | a = 15                                                  | if M0, B1 for $r = 0.4$ and 0.6 and B1 for $a = 15$ by trial and improvement mark to benefit of candidate |
|    |               |    | r = 0.4 and 0.6                                                                                                      | A1<br>[ <b>7</b> ] | a = 15<br>$a = \frac{6}{0.6} = 10$ oe                   |                                                                                                           |
| 11 | ( <b>ii</b> ) |    | $10 \times (3/5)^{n-1}$ and $15 \times (2/5)^{n-1}$ seen                                                             | M1                 |                                                         |                                                                                                           |
|    |               |    | $15 \times 2^{n-1}$ : $10 \times 3^{n-1}$ or $3 \times \frac{2^{n-1}}{5^{n-1}}$ : $2 \times \frac{3^{n-1}}{5^{n-1}}$ | M1                 | may be implied by $3 \times 2^{n-1} : 2 \times 3^{n-1}$ | condone ratio reversed                                                                                    |
|    |               |    | $3\times 2^{n-1}: 2\times 3^{n-1}$                                                                                   | A1                 | and completion to given answer www                      | condone ratio reversed                                                                                    |
|    |               |    |                                                                                                                      | [3]                |                                                         |                                                                                                           |

June 2012

#### Appendix: examples for Question 10(ii)





PMT

| Q | uestic        | on Ansv                                  | ver Marks   | Guidan             | се                                                                                                                                 |
|---|---------------|------------------------------------------|-------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 1 |               | $kx^{\frac{5}{2}}$                       | M1          |                    |                                                                                                                                    |
|   |               | <i>k</i> = 12                            | A1          |                    |                                                                                                                                    |
|   |               | + <i>c</i>                               | A1<br>[3]   |                    |                                                                                                                                    |
| 2 | (i)           | converging + valid reas                  | on 1<br>[1] |                    | eg converges to 0, $r = \frac{1}{2}$ , difference<br>between terms decreasing, sum of<br>terms converges to 6, G.P. with $ r  < 1$ |
| 2 | (ii)          | neither + valid reason                   | 1<br>[1]    |                    | eg divergent oe, A.P., $d = 4$ oe,<br>convergent and periodic ruled out with<br>correct reasons                                    |
| 2 | (iii)         | periodic + valid reason                  | 1           |                    | eg repeating cycle of terms                                                                                                        |
|   |               |                                          | [1]         |                    |                                                                                                                                    |
| 3 | (i)           | (0.8, -2) oe                             | 2           | B1 each coordinate | <b>SC0</b> for (4, -2)                                                                                                             |
|   |               |                                          | [2]         |                    |                                                                                                                                    |
| 3 | ( <b>ii</b> ) | Translation                              | B1          |                    |                                                                                                                                    |
|   |               | $\begin{pmatrix} 90\\0 \end{pmatrix}$ oe | B1          | or eg 270 to left  | allow <b>B2</b> for rotation through 180° about (45, 0) oe                                                                         |
|   |               |                                          | [2]         |                    |                                                                                                                                    |

| C | uestio | n Answer                                           | Marks    | Guida                                                                   | nce                                                                             |
|---|--------|----------------------------------------------------|----------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 4 | (i)    | 1.2r = 4.2                                         | M1       | or $\frac{68.7549}{360} \times 2\pi r = 4.2$ with $\theta$ to 3 sf or   | <b>B2</b> if correct answer unsupported                                         |
|   |        | 3.5 cao                                            | A1       | better                                                                  |                                                                                 |
|   |        |                                                    | [2]      |                                                                         |                                                                                 |
| 4 | (ii)   | $\cos 0.6 = \frac{d}{\text{their 3.5}}$            | M1       | or $\cos 34.377 = \frac{d}{\text{their } 3.5}$ with $\theta$ to 3 sf or | or correct use of Sine Rule with 0.9708 (55.623°)                               |
|   |        | 2.888 to 2.9                                       | A1       | better                                                                  | or area = $5.709 = 0.5 \times h \times 3.952$ ,<br>or $3.5^2 - 1.976^2 = d^2$   |
|   |        |                                                    | [2]      |                                                                         |                                                                                 |
| 5 |        | gradient = $\frac{4\sqrt{9.5} - 12}{9.5 - 9}$      | M1       |                                                                         | $4\sqrt{38} - 244\sqrt{38} - 24$                                                |
|   |        | 0.6577 to 0.66                                     | A1       | or 0.657656isw                                                          |                                                                                 |
|   |        | $9 < x_{\rm C} < 9.5$                              | B1       |                                                                         | allow $8.53 \le x_{\rm C} < 9$                                                  |
|   |        |                                                    | [3]      |                                                                         |                                                                                 |
| 6 |        | $6x^2 + 18x - 24$                                  | B1       |                                                                         |                                                                                 |
|   |        | their $6x^2 + 18x - 24 = 0$ or $> 0$ or $\ge 0$    | M1       |                                                                         | or sketch of $y = 6x^2 + 18x - 24$ with<br>attempt to find <i>x</i> -intercepts |
|   |        | -4 and $+1$ identified oe $x < -4$ and $x > 1$ cao | A1<br>A1 | or $x \le -4$ and $x \ge 1$                                             | if <b>B0M0</b> then <b>SC2</b> for fully correct                                |
|   |        |                                                    | [4]      |                                                                         | answer                                                                          |

<sup>4752</sup> 

PMT

| Q | uestion | Answer                                                                   | Marks    | Guida                                                                                                | nce                                                                                                                                                                          |
|---|---------|--------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 |         | $\cos A = \frac{105^2 + 92^2 - 75^2}{2 \times 105 \times 92} \text{ oe}$ | M1       | or $\cos B = \frac{75^2 + 92^2 - 105^2}{2 \times 75 \times 92}$ oe                                   | or $\cos C = \frac{105^2 + 75^2 - 92^2}{2 \times 105 \times 75}$ oe                                                                                                          |
|   |         | 0.717598soi                                                              | A1       | 0.2220289soi                                                                                         | 0.519746soi                                                                                                                                                                  |
|   |         | A = 44.14345° soi<br>[0.770448553]                                       | A1       | B = 77.1717719° soi<br>[1.346901422]                                                                 | C = 58.6847827° soi<br>[1.024242678]                                                                                                                                         |
|   |         | $\frac{1}{2} \times 92 \times 105 \times \sin(\text{their A})$           | M1       | or $\frac{1}{2} \times 75 \times 92 \times \sin(\text{their B})$                                     | ignore minor errors due to premature<br>rounding for second A1<br>condone A, B or C wrongly attributed<br>or $\frac{1}{2} \times 75 \times 105 \times \sin(their \text{ C})$ |
|   |         | 3360 or 3361 to 3365                                                     | A1       |                                                                                                      | or<br>M3 for<br>$\sqrt{136(136 - 75)(136 - 105)(136 - 92)}$                                                                                                                  |
|   |         |                                                                          | [5]      |                                                                                                      | <b>A2</b> for correct answer 3360 or 3363 - 3364                                                                                                                             |
| 8 | (i)     | y 1                                                                      | M1<br>A1 | for curve of correct shape in both<br>quadrants<br>through (0, 1) shown on graph or in<br>commentary | <b>SC1</b> for curve correct in 1 <sup>st</sup> quadrant<br>and touching (0,1) or identified in<br>commentary                                                                |
|   |         | <i>x</i>                                                                 | [2]      |                                                                                                      |                                                                                                                                                                              |

| Q | uestion | Answer                                                                                                                                                                                                            | Marks                    | Guida                                                                                                                                                                                                                                                          | nce                                                                                                                                                                                                                                                                                                                                                                         |
|---|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8 | (ii)    | $5x - 1 = \frac{\log_{10} 500000}{\log_{10} 3}$ $x = (\frac{\log_{10} 500000}{\log_{10} 3} + 1) \div 5$                                                                                                           | M1<br>M1                 | or $5x - 1 = \log_3 500\ 000$<br>$x = (\log_3 500000 + 1) \div 5$                                                                                                                                                                                              | condone omission of base 10<br>use of logs in other bases may earn<br>full marks                                                                                                                                                                                                                                                                                            |
|   |         | [x = ] 2.588 to 2.59                                                                                                                                                                                              | A1<br>[ <b>3</b> ]       | oe; or <b>B3</b> www                                                                                                                                                                                                                                           | if unsupported, <b>B3</b> for correct answer<br>to 3 sf or more www                                                                                                                                                                                                                                                                                                         |
| 9 | (i)     | $\left(\frac{\sin\theta}{\cos\theta}\right) = 1$ oe<br>$\sin\theta = \cos^2\theta$ and completion to given result                                                                                                 | M1<br>A1<br>[ <b>2</b> ] | www                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                             |
| 9 | (ii)    | $\sin^{2} \theta + \sin \theta - 1[=0]$ $[\sin \theta =] \frac{-1 \pm \sqrt{5}}{2} \text{ oe may be implied by}$ correct answers $[\theta =] 38.17, \text{ or } 38.2 \text{ and } 141.83, 141.8 \text{ or}$ $142$ | M1<br>A1<br>A1<br>[3]    | allow 1 on RHS if attempt to complete<br>square<br>may be implied by correct answers<br>ignore extra values outside range, <b>A0</b> if<br>extra values in range or in radians<br><b>NB</b> 0.6662 and 2.4754 if working in radian<br>mode earns <b>M1A1A0</b> | condone $y^2 + y - 1 = 0$<br>mark to benefit of candidate<br>ignore any work with negative root &<br>condone omission of negative root with<br>no comment eg <b>M1</b> for 0.618<br>if unsupported, <b>B1</b> for one of these, <b>B2</b><br>for both. If both values correct with<br>extra values in range, then <b>B1</b> .<br><b>NB</b> 0.6662 and 2.4754 to 3sf or more |

| Q  | uestic | on | Answer                                                                                 | Marks      | Guidar                                               | nce                                                |
|----|--------|----|----------------------------------------------------------------------------------------|------------|------------------------------------------------------|----------------------------------------------------|
| 10 | (i)    |    | at A $y = 3$                                                                           | B1         |                                                      |                                                    |
|    |        |    | $\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 4$                                             | B1         |                                                      |                                                    |
|    |        |    | their $\frac{dy}{dx} = 2 \times 4 - 4$                                                 | M1*        | must follow from attempt at differentiation          |                                                    |
|    |        |    | grad of normal $= \frac{-1}{their 4}$                                                  | M1dep*     |                                                      |                                                    |
|    |        |    | $y - 3 = (^{-1}/_4) \times (x - 4)$ oe isw                                             | A1         |                                                      |                                                    |
|    |        |    | substitution of $y = 0$ and completion to given result with at least 1 correct interim | A1         | or substitution of $x = 16$ to obtain $y = 0$        | correct interim step may occur before substitution |
|    |        |    | step www                                                                               | [6]        |                                                      |                                                    |
| 10 | (ii)   |    | at B, <i>x</i> = 3                                                                     | B1         | may be embedded                                      |                                                    |
|    |        |    | $F[x] = \frac{x^3}{3} - \frac{4x^2}{2} + 3x$                                           | M1*        | condone one error, must be three terms, ignore $+ c$ |                                                    |
|    |        |    | F[4] – F[their 3]                                                                      | M1*<br>dep | dependent on integration attempted                   |                                                    |
|    |        |    | area of triangle = 18 soi                                                              | <b>B</b> 1 |                                                      | may be embedded in final answer                    |
|    |        |    | area of region = $19\frac{1}{3}$ oe isw                                                | A1         | 19.3 or better                                       |                                                    |
|    |        |    |                                                                                        | [5]        |                                                      |                                                    |

<sup>4752</sup> 

| January 2 | 013 |
|-----------|-----|
|-----------|-----|

| Q  | Question |              | Answer                                                                                                                                      | Marks                    | Guidar                                                           | nce                                                               |
|----|----------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|
| 11 | (i)      | (A)          | 2A + D = 25 oe<br>4A + 6D = 250 oe<br>D = 50,<br>A = -12.5 oe                                                                               | B1<br>B1<br>B1<br>B1     |                                                                  | condone lower-case <i>a</i> and <i>d</i>                          |
|    |          |              |                                                                                                                                             | [4]                      |                                                                  |                                                                   |
| 11 | (i)      | ( <b>B</b> ) | $\frac{50}{2} (2 \times theirA + 49 \times their D) [= 60 \ 625] \text{ or}$ $\frac{20}{2} (2 \times their A + 19 \times their D) [= 9250]$ | M1                       | or $a = \text{their } A + 20D$                                   |                                                                   |
|    |          |              | their "S <sub>50</sub> – S <sub>20</sub> "<br>51 375 cao                                                                                    | M1<br>A1<br>[ <b>3</b> ] | $S_{30} = \frac{30}{2}(a+l)$ oe with $l = \text{their } A + 49D$ | $S_{30} = \frac{30}{2} (2 \times their987.5 + 29 \times their50)$ |

| Q  | uestic | on | Answer                                                                    | Marks        | Guidar                                                                                                                                                   | nce                                                                                                                                                                            |
|----|--------|----|---------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11 | (ii)   |    | $\frac{a(r^2-1)}{r-1} = 25 \text{ or } \frac{a(r^4-1)}{r-1} = 250$        | B1           |                                                                                                                                                          |                                                                                                                                                                                |
|    |        |    | $\frac{a\frac{(r^4-1)}{r-1}}{a\frac{(r^2-1)}{(r-1)}} = \frac{250}{25}$ oe | M1           |                                                                                                                                                          | allow $a(1 + r)$ as the denominator in the quadruple- decker fraction                                                                                                          |
|    |        |    | and completion to given result www                                        |              | at least one correct interim step required                                                                                                               | $r^2 = x$ oe may be used                                                                                                                                                       |
|    |        |    | use of $r^4 - 1 = (r^2 - 1)(r^2 + 1)$ to obtain<br>$r^2 + 1 = 10$ www     | M1           | or multiplication and rearrangement of quadratic to obtain $r^4 - 10r^2 + 9 = 0$ oe with all three terms on one side                                     | or <b>M1</b> for valid alternative algebraic<br>approaches eg using $a(1 + r) = 25$ and<br>$ar^2 + ar^3 = ar^2 (1 + r) = 225$                                                  |
|    |        |    | <i>r</i> = ± 3                                                            | A1           |                                                                                                                                                          | or <b>B2</b> for all four values correct, <b>B1</b> for<br>both <i>r</i> values or both <i>a</i> values or one<br>pair of correct values if second <b>M</b> mark<br>not earned |
|    |        |    | a = 6.25  or  -12.5  oe                                                   | A1           | or A1 for one correct pair of values of $r$ and $a$                                                                                                      |                                                                                                                                                                                |
| 10 |        |    | 1                                                                         | [5]          |                                                                                                                                                          | : Commence of a 1 D2 Commence of a model in the                                                                                                                                |
| 12 | (i)    |    | $\log_{10}p = \log_{10}a + \log_{10}10^{kt}$                              | M1           | condone omission of base;                                                                                                                                | if unsupported, <b>B2</b> for correct equation                                                                                                                                 |
|    |        |    | $\log_{10}p = \log_{10}a + kt \text{ www}$                                | A1           |                                                                                                                                                          |                                                                                                                                                                                |
|    |        |    |                                                                           | [2]          |                                                                                                                                                          |                                                                                                                                                                                |
| 12 | (ii)   |    | 2.02, 2.13, 2.23                                                          | B1           | allow given to more sig figs                                                                                                                             | 2.022304623, 2.129657673,<br>2.229707433                                                                                                                                       |
|    |        |    | plots correct<br>ruled line of best fit                                   | B1f.t.<br>B1 | to nearest half square<br>y-intercept between 1.65 and 1.7 and at least<br>one point on or above the line and at least<br>one point on or below the line | ft their plots<br>must cover range from $x = 9$ to 49                                                                                                                          |

| Question |              | on | Answer                                                                    | Marks              | Guidar                                                                                                                                          | nce                                                               |
|----------|--------------|----|---------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| 12       | (iii)        |    | 0.0105 to 0.0125 for <i>k</i>                                             | B1                 |                                                                                                                                                 | must be connected to k                                            |
|          |              |    | 1.66 to 1.69 for $\log_{10}a$ or 45.7 to 49.0 for $a$                     | B1                 |                                                                                                                                                 | must be connected to a                                            |
|          |              |    | $\log_{10}p = \text{their } kt + \text{their } \log_{10}a$                | B1                 | must be a correct form for equation of line<br>and with their <i>y</i> -intercept and their gradient<br>(may be found from graph or from table, |                                                                   |
|          |              |    | $p = \text{their "47.9} \times 10^{0.0115t}$ " or $10^{1.6785+0.0115t}$ " | B1                 | must be correct method)<br>as above, "47.9" and "0.0115" must follow<br>from correct method                                                     |                                                                   |
|          |              |    |                                                                           | [4]                |                                                                                                                                                 |                                                                   |
| 12       | (iv)         |    | 45.7 to 49.0 million                                                      | 1                  | 'million' needed, not just the value of p                                                                                                       |                                                                   |
|          |              |    |                                                                           | [1]                |                                                                                                                                                 |                                                                   |
| 12       | ( <b>v</b> ) |    | reading from graph at 2.301                                               | M1*                | or $\log_{10}200 = (\log_{10}a + kt)$                                                                                                           | or $200 = "10^{\log a + kt}$ ," oe                                |
|          |              |    | their 54                                                                  | M1dep*             | eg for their $t = \frac{\log 200 - 1.68}{0.0115}$                                                                                               | or <b>M1</b> for their $t = \frac{\log \frac{200}{47.9}}{0.0115}$ |
|          |              |    | 2014 cao                                                                  | A1<br>[ <b>3</b> ] | if unsupported, allow <b>B3</b> only if consistent with graph                                                                                   |                                                                   |

### Mark Scheme

| June | 2013 |
|------|------|
|------|------|

| ( | Questi | on | Answer                                                                        | Marks                  | Guida                                                                                     | nce                                                                                                                                                             |
|---|--------|----|-------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | (i)    |    | $-10x^{-6}$ isw                                                               | B1<br>B1               | for $-10$<br>for $x^{-6}$<br>ignore $+c$ and $y =$                                        | if <b>B0B0</b> then <b>SC1</b> for $-5 \times 2x^{-5-1}$ or better soi                                                                                          |
|   |        |    |                                                                               | [2]                    |                                                                                           |                                                                                                                                                                 |
| 1 | (ii)   |    | $y = x^{\frac{1}{3}} \text{ soi}$ $kx^{n-1}$                                  | B1<br>M1               | condone $y' = x^{\frac{1}{3}}$ if differentiation follows<br>ft their fractional <i>n</i> |                                                                                                                                                                 |
|   |        |    | $\frac{1}{3}x^{-\frac{2}{3}}$ is w                                            | A1                     | ignore $+ c$ and $y =$                                                                    | allow 0.333 or better                                                                                                                                           |
| 2 | (i)    |    | 11.5, 11 and 10.5 oe<br>arithmetic and/or divergent                           | [3]<br>B1<br>B1<br>[2] | allow AP<br>ignore references to <i>a</i> , <i>d</i> or <i>n</i>                          | ignore labelling<br>incorrect embellishments such as<br>converging arithmetic, diverging<br>geometric do not score. <b>B0</b> if a<br>choice is given eg AP/GP. |
| 2 | (ii)   |    | n = 30 identified as number of terms in relevant AP                           | B1                     |                                                                                           | eg $1 + 2 + 3 + \ldots + 30$ is not a relevant AP                                                                                                               |
|   |        |    | $S_{30} = \frac{30}{2} \left( 2 \times 11.5 + (30 - 1) \times -0.5 \right)$   | M1                     | or $S_{30} = \frac{30}{2}(11.5 + -3)$                                                     | condone one error in <i>a</i> , <i>d</i> or <i>n</i><br>but do not condone $l = -\frac{1}{2}$                                                                   |
|   |        |    | 127.5 oe                                                                      | A1                     | allow recovery from slip in working (eg<br>omission of minus sign)                        | <b>SC3</b> if each term calculated and summed to correct answer or for 127.5                                                                                    |
| 3 |        |    | $kx^{-2}$                                                                     | [3]<br>M1*             |                                                                                           | $\begin{array}{c} \text{unsupported} \\ k \neq 0 \end{array}$                                                                                                   |
| 3 |        |    | $-9x^{-2}$                                                                    | A1                     | may be awarded later                                                                      | $k \neq 0$<br>no marks at all for responses based on<br>" $mx + c$ "                                                                                            |
|   |        |    | +2x+c                                                                         | M1*                    | c may appear at substitution stage                                                        |                                                                                                                                                                 |
|   |        |    | substitution of $x = 3$ and $y = 6$ in their expression following integration | M1dep                  | on award of <i>either</i> of previous M1s                                                 | eg $6 = k3^{-2} + 2 \times 3 + c$                                                                                                                               |
|   |        |    | c = 1                                                                         | A1                     | A0 if spoiled by further working                                                          | for full marks, <b>must</b> see " <i>y</i> =" at some stage                                                                                                     |
|   |        |    |                                                                               | [5]                    |                                                                                           |                                                                                                                                                                 |

| ( | Question | Answer                                                                                                                                                      | Marks     | Guidan                                                                                                             | ce                                                                                   |
|---|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 4 | (i)      | clear diagram or explanation starting with<br>equilateral triangle correctly showing 30 as<br>half angle and sides 1 and 2 or multiples of<br>these lengths | B1        |                                                                                                                    | units for sides and angle not required                                               |
|   |          | correct use of Pythagoras <i>and</i> adjacent and<br>hypotenuse correctly identified to obtain<br>given result $\cos 30^\circ = \frac{\sqrt{3}}{2}$         | [2]       | adjacent and hypotenuse may be identified<br>on diagram                                                            | condone abbreviations                                                                |
| 4 | (ii)     | $\pm \frac{\pi}{6}$ or $-\frac{5\pi}{6}$ soi                                                                                                                | M1        | may be implied by correct answer or<br>±0.523598775, or may appear on quadrant<br>diagram or graph                 | condone $\pm 30^{\circ}$ or $-150^{\circ}$                                           |
|   |          | $\frac{11\pi}{6}$                                                                                                                                           | A1        | if <b>A0A0</b> , <b>SC1</b> for $1.8333333\pi$ and                                                                 | ignore extra values outside the range                                                |
|   |          | $\frac{7\pi}{6}$                                                                                                                                            | A1<br>[3] | 1.166666666 $\pi$ to 3 or more sf or SC1 for 330° and 210° www                                                     | if full marks or <b>SC1</b> awarded, subtract 1 for extra values <i>in</i> the range |
| 5 | (i)      | ruled line touching curve at $x = 2$                                                                                                                        | M1        |                                                                                                                    | intent to touch, but must not clearly cut curve                                      |
|   |          | their $\frac{y_2 - y_1}{x_2 - x_1}$ from their <i>tangent</i>                                                                                               | M1        | may be on graph or in working; must use<br>correct points from their line<br>their tangent may be at another point | M0 for reciprocal,                                                                   |
|   |          | answer in range 2.5 to 3.0 inclusive                                                                                                                        | A1        | both <b>M1</b> s must be awarded                                                                                   | (value is approx 2.773)                                                              |
| 5 | (ii)     | 3.482202253 and 4.59479342 rot to 3 or more sf                                                                                                              | [3]<br>B1 |                                                                                                                    |                                                                                      |
|   |          | 2.78 to 2.7815 or 2.8                                                                                                                                       | B1<br>[2] | mark the final answer                                                                                              | 2.781477917                                                                          |

| ( | Questio | on | Answer                                                        | Marks     | Guida                                                                                    | nce                                                                                                                                   |
|---|---------|----|---------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 6 | (i)     |    | 2 <i>S</i> cao                                                | B1<br>[1] |                                                                                          |                                                                                                                                       |
| 6 | (ii)    |    | $\frac{a}{1-r^2}$                                             | M1        | if <b>M0, SC1</b> for $\frac{1-r}{1-r^2} \times S$ oe                                    |                                                                                                                                       |
|   |         |    | $\frac{S}{1+r}$ or $\frac{1}{1+r}S$                           | A1        |                                                                                          |                                                                                                                                       |
|   |         |    |                                                               | [2]       |                                                                                          |                                                                                                                                       |
| 7 |         |    | h = 1.5                                                       | B1        | h = 1.5                                                                                  | allow if used with 6 separate trapezia                                                                                                |
|   |         |    | $\frac{1.5}{2} \times (2.3 + 2(2.9 + 4 + 4.6 + 4.2 + 3) + 0)$ | M1        | basic shape of formula correct,<br>omission of brackets may be recovered later           | at least 4 y-values in middle bracket, eg<br>$\frac{1.5}{2} \times (2.3 + 2(2.9 + 4 + 4.6 + 4.2) + 3)$ <b>M0</b> if any x values used |
|   |         |    | all y-values correct and correctly placed in formula          | B1        | condone omission of outer brackets and/or omission of 0                                  |                                                                                                                                       |
|   |         |    | 29.775 to 3 sf or better; isw                                 | A1<br>[4] | answer only does not score                                                               | or <b>B1</b> + <b>B3</b> if 6 separate trapezia calculated to give correct answer                                                     |
| 8 | (i)     |    | graph from (-1, 1) to (1, 1) to (2, 2) to (3, 0)              | [2]       | <b>B1</b> for three points correct or for all four points correct but clearly not joined | points must be joined, but not always<br>easy to see, so BOD if in doubt. Accept<br>freehand drawing.                                 |
| 8 | (ii)    |    | graph from (-2, 3) to (2, 3) to (4, 6) to (6, 0)              | [2]       | <b>B1</b> for three points correct or for all four points correct but clearly not joined | points must be joined, but not always<br>easy to see, so BOD if in doubt. Accept<br>freehand drawing.                                 |

| Question |       | Answer                                                          |            | Guidance                                                                                   |                                                                                                                     |  |
|----------|-------|-----------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|
| 9        | (i)   | $3x^2 - 6x - 22$                                                | M1         | condone one incorrect term, but must be<br>three terms                                     | condone "y ="                                                                                                       |  |
|          |       | their $y' = 0$ soi                                              | M1         | at least one term correct in their y'                                                      | may be implied by use of eg quadratic<br>formula, completing square, attempt to<br>factorise                        |  |
|          |       | 3.89<br>-1.89                                                   | A1<br>A1   | if <b>A0A0</b> , <b>SC1</b> for $\frac{3\pm 5\sqrt{3}}{3}$ or $1\pm \frac{5}{\sqrt{3}}$ or |                                                                                                                     |  |
|          |       |                                                                 | [4]        | better, or both decimal answers given to a different accuracy or from truncation           | 3.886751346 and -1.886751346                                                                                        |  |
| 9        | (ii)  | $x^3 - 3x^2 - 22x + 24 = 6x + 24$                               | M1         | may be implied by $x^3 - 3x^2 - 28x$ [= 0]                                                 |                                                                                                                     |  |
|          |       | $x^3 - 3x^2 - 28x \ [=0]$                                       | M1         | may be implied by $x^2 - 3x - 28[=0]$                                                      |                                                                                                                     |  |
|          |       | other point when $x = 7$ isw                                    | A1<br>[3]  | dependent on award of both <b>M</b> marks                                                  | ignore other values of <i>x</i>                                                                                     |  |
| 9        | (iii) | $F[x] = \frac{x^4}{4} - \frac{3x^3}{3} - \frac{22x^2}{2} + 24x$ | M1*        | allow for three terms correct; condone $+ c$                                               | alternative method<br>M1 for<br>$\int ((x^3 - 3x^2 - 22x + 24) - (6x + 24))dx$ may be implied by 2 <sup>nd</sup> M1 |  |
|          |       | F[0] – F[–4]                                                    | M1dep      | allow $0 - F[-4]$ , condone $- F[-4]$ , but do not allow $F[-4]$ only                      | <b>M1*</b> for $F[x] = \frac{x^4}{4} - \frac{3x^3}{3} - \frac{28x^2}{2}$<br>condone one error in integration        |  |
|          |       | area of triangle $= 48$                                         | <b>B</b> 1 |                                                                                            | <b>M1dep</b> for F[0] – F[–4]                                                                                       |  |
|          |       | area required = 96 from fully correct working                   | A1         | A0 for – 96, ignore units,                                                                 | no marks for 96 unsupported                                                                                         |  |
|          |       |                                                                 | [4]        |                                                                                            |                                                                                                                     |  |

<sup>4752</sup> 

| Q  | Juestic | on  | Answer                                                              | Marks | Guidan                                                                                     | ice                                                                                |
|----|---------|-----|---------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| 10 | (i)     | (A) | $AC^2 = 12.8^2 + 7.5^2$ oe                                          | M1    | allow correct application of cosine rule or<br>from finding relevant angle and using trig  |                                                                                    |
|    |         |     | <i>AC</i> = 14.83543056                                             | A1    | rot to 3 or more sf, or 15                                                                 | <b>B2</b> for 14.8 or better unsupported                                           |
|    |         |     | $\tan C = \frac{12.8}{7.5}$                                         | M1    | or $\sin C = \frac{12.8}{t_{their14.8}}$                                                   | or $\frac{\sin C}{12.8} = \frac{\sin 90}{their 14.8}$                              |
|    |         |     | or $C = 90 - \tan^{-1}(\frac{7.5}{12.8})$ oe                        |       | or $\cos C = \frac{7.5}{14.8}$                                                             | or $\cos C = \frac{their 14.8^2 + 7.5^2 - 12.8^2}{2 \times 7.5 \times their 14.8}$ |
|    |         |     | 59.6 to 59.64                                                       | A1    |                                                                                            |                                                                                    |
|    |         |     | $\frac{AD}{\sin(155 - their 59.6)} = \frac{their 14.8}{\sin 35}$ oe | M1    |                                                                                            |                                                                                    |
|    |         |     | 25.69 to 25.8                                                       | A1    | allow <b>B2</b> for $25.69 \le AD < 25.8$<br>unsupportedbut <b>B0</b> for 25.8 unsupported | <b>M0A0</b> for $^{14.8}/_{cos55} = 25.803$                                        |
|    |         |     |                                                                     | [6]   |                                                                                            |                                                                                    |

| Question |               | on  | Answer                                                                                               | Marks     | Guidance                                                                                                                              |                                                                                                 |
|----------|---------------|-----|------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 10       | (i)           | (B) | area of $ABC = 48$ soi<br><sup>1</sup> / <sub>2</sub> ×their 14.8×their 25.7×sin(their 59.6<br>– 10) | B1<br>M1  | may be implied by correct final answer in range or by sight of $\frac{1}{2} \times 12.8 \times 7.5$ oe may be implied by 144.8 to 146 | condone 48.0                                                                                    |
|          |               |     | 192.8 to 194[m <sup>2</sup> ]                                                                        | A1<br>[3] |                                                                                                                                       | <b>B3</b> for correct answer in range if unsupported                                            |
| 10       | (ii)          |     | angle $HMG = \frac{\pi - 1.1}{2}$<br>or $MHG = 0.55$ (31.5126°)                                      | B1        | or angle <i>EMF</i><br>or angle <i>MEF</i>                                                                                            | allow 1.02 to 1.021 <i>or</i> 58.487° to 58.5°                                                  |
|          |               |     | <i>HM</i> = 1.7176 to 1.7225                                                                         | B1        |                                                                                                                                       | may be implied by final answer                                                                  |
|          |               |     | $\frac{1}{2} \times 1.1 \times their HM^2$<br>or $\frac{\theta}{360} \times \pi \times their HM^2$   | M1        | 1.63(0661924)<br>$\theta = 63(.025357)$                                                                                               | check arithmetic if necessary<br>their $HM \neq 0.9$ or 1.8                                     |
|          |               |     | area of triangle $EMF = 0.652$ to $0.662$                                                            | B1        | or MGH                                                                                                                                | may be implied by final answer or in double this (1.304 to 1.324)                               |
|          |               |     | 2.95 to 2.952 [m <sup>2</sup> ] cao                                                                  | A1        |                                                                                                                                       | full marks may be awarded for final<br>answer in correct range ie allow<br>recovery of accuracy |
|          |               |     |                                                                                                      | [5]       |                                                                                                                                       |                                                                                                 |
| 11       | (i)           |     | $65 \times (1 - 0.017)^3$ oe                                                                         | M1        | may be longer method finding decrease year by year etc                                                                                | NB use of $3 \times 0.017$ leads to 61.685, which doesn't score                                 |
|          |               |     | 61.7410 showing more than 3 sf                                                                       | A1        | answer 61.7 given                                                                                                                     |                                                                                                 |
|          |               |     |                                                                                                      | [2]       |                                                                                                                                       |                                                                                                 |
| 11       | ( <b>ii</b> ) |     | $[d =] 65 \times 0.983^n$ oe                                                                         | B1        | eg $63.895 \times 0.983^{n-1}$ or $61.7 \times 0.983^{n-3}$                                                                           |                                                                                                 |
|          |               |     |                                                                                                      | [1]       |                                                                                                                                       |                                                                                                 |

<sup>4752</sup> 

| Question |       | n Answer                                                                                       | Marks     | Guidance                                                              |                                                                                                                                                             |
|----------|-------|------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11       | (iii) | $65 \times 0.983^n < 3 \text{ or}$<br>$\log_{10}(65 \times 0.983^n) < \log_{10}3 \text{ oe}$   | M1*       |                                                                       | condone omission of base 10<br>throughout                                                                                                                   |
|          |       | $\log_{10}65 + \log_{10}0.983^n < \log_{10}3$ www                                              | M1dep     | may be implied by<br>eg $\log_{10}65 + n \log_{10}0.983 < \log_{10}3$ | if <b>M0M0</b> , <b>SC1</b> for<br>$\log_{10}65 + n \log_{10}0.983 < \log_{10}3$ even if<br>< is replaced by eg = or > with no prior<br>incorrect log moves |
|          |       | $[\log_{10}65 + n \log_{10}0.983 < \log_{10}3]$<br>n log_{10}0.983 < log_{10}3- log_{10}65 and |           | or $[\log_{10}0.983^n < \log_{10}3 - \log_{10}65]$                    | NB watch for correct inequality sign at each step                                                                                                           |
|          |       | completion to $n > \frac{\log_{10} 3 - \log_{10} 65}{\log_{10} 0.983}$ <b>AG</b> www           | A1        | inequality signs must be correct throughout                           | reason for change of inequality sign not required                                                                                                           |
|          |       | n = 180 cao                                                                                    | B1        | <b>B0</b> for <i>n</i> > 180                                          | <i>n</i> > 179.38                                                                                                                                           |
| 11       | (iv)  | $63.895 = 65 \times 10^{-k}$ soi                                                               | [4]<br>B1 | or $65 \times 0.983 = 65 \times 10^{-k}$                              | accept 63.895 rot to 3 or 4 sf;                                                                                                                             |
|          |       |                                                                                                |           |                                                                       | <b>B1</b> may be awarded for substitution of $t = 1$ after manipulation                                                                                     |
|          |       | $log_{10}$ (their 63.895) = $log_{10}65 - k$<br>or $-k = log_{10}$ (their 0.983)               | M1        | their 63.895 must be from attempt to reduce 65 by 1.7% at least once  | M1A1A1 may be awarded if other value of <i>t</i> with correct <i>d</i> is used                                                                              |
|          |       | $[k = ] 7.4 \times 10^{-3} \text{ to } 7.45 \times 10^{-3}$                                    | A1        | $[k = ] -\log_{10} 0.983$ isw                                         |                                                                                                                                                             |
|          |       | $[d = ] 42.1 \text{ to } 42.123 [^{\circ}C] \text{ isw}$                                       | A1<br>[4] |                                                                       | NB <b>B1M1A0A1</b> is possible;<br>unsupported answers for <i>k</i> and/or <i>d</i> do<br>not score                                                         |