

Mathematics in Education and Industry

MEI STRUCTURED MATHEMATICS

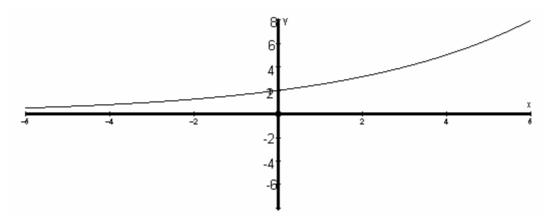
CONCEPTS FOR ADVANCED MATHEMATICS, C2

Practice Paper C2-C

Additional materials: Answer booklet/paper Graph paper MEI Examination formulae and tables (MF12)

TIME 1 hour 30 minutes

INSTRUCTIONS


- Write your Name on each sheet of paper used or the front of the booklet used.
- Answer **all** the questions.
- You **may** use a graphical calculator in this paper.

INFORMATION

- The number of marks is given in brackets [] at the end of each question or part-question.
- You are advised that you may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The total number of marks for this paper is **72**.

Section A (36 marks)

- The common ratio of a geometric progression is -0.5. The sum of its first three terms is 15. Find the first term. Find also the sum to infinity.
- 2 The diagram shows the graph of y = f(x). The graph passes through the point with coordinates (0, 2).

On separate diagrams sketch the graphs of the following functions, indicating clearly the point of intersection with the *y* axis.

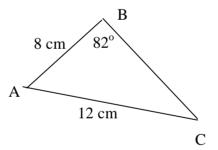
(i) y = -f(x) [1]

(ii)
$$y = f(3x)$$
 [2]

- 3 Given that A is the obtuse angle such that $\sin A = \frac{1}{5}$, find the exact value of cosA. [4]
- 4 You are given that $y = x^3 12x$.

(i) Find
$$\frac{dy}{dx}$$
. [2]

(ii) Hence find the coordinates of the turning points of the curve. [3]


- 5 A sequence is defined by $a_k = 5k + 1$, for k = 1, 2, 3...
 - (i) Write down the first three terms of the sequence. [1]

(ii) Evaluate
$$\sum_{k=1}^{100} a_k$$
. [4]

6 Find the solution to this equation, correct to 3 significant figures.

$$(2^x)(2^{x+1}) = 10.$$
 [5]

- 7 The gradient of a curve y = f(x) is given by $\frac{dy}{dx} = 3x^2 10x + 6$. The curve passes through the point (2,3) Find the equation of the curve. [5]
- 8 In the triangle ABC shown, AB = 8 cm. AC = 12 cm and angle $ABC = 82^{\circ}$. Find θ correct to 3 significant figures. [4]

- 9 Fig. 9 shows
 - P The line y = xQ The curve $y = \sqrt{\frac{1}{2}(x + x^2)}$

$$R \qquad \text{The curve} \quad y = \sqrt{x} \ .$$

(i) Write down the area of the triangle formed by the line y = x, the line x = 1 and the *x*-axis. [1]

(ii) Show that the area of the region formed by the curve $y = \sqrt{x}$, the line x = 1 and the *x*-axis is $\frac{2}{3}$. [3]

An estimate is required of the Area, A, of the region formed by the curve $y = \sqrt{\frac{1}{2}(x+x^2)}$, the line x = 1 and the x-axis.

(iii) Use results to parts (i) and (ii) to complete the statement

- (iv) Use the Trapezium Rule with 4 strips to find an estimate for A. [4]
- (v) Draw a sketch of Fig. 9. Use it to illustrate the area found as the trapezium rule estimate for *A*.

Explain how your diagram shows that the trapezium rule estimate must be:

consistent with the answer to part (iv);

an under-estimate for A.

. .

[3]

10 A culture of bacteria is observed during an experiment. The number of bacteria is denoted by N and the time in hours after the start of the experiment by t. The table gives observations of t and N.

Time (<i>t</i> hours)	1	2	3	4	5
Number of bacteria (N)	120	170	250	370	530

- (i) Plot the points (t, N) on graph paper and join them with a smooth curve. [2]
- (ii) Explain why the curve suggests why the relationship connecting t and N may be of the form $N = ab^t$. [1]
- (iii) Explain how, by using logarithms, the curve given by plotting N against t can be transformed into a straight line.
 State the gradient of this straight line and its intercept with the vertical axis in terms of a and b.
- (iv) Complete a table of values for $\log_{10} N$ and plot the points (*t*, $\log_{10} N$) on graph paper. Draw the best fit line through the points and use it to estimate the values of *a* and *b*. [6]

11 The sequence $a_{1,} a_{2,} a_{3,}$ where a_{1} is a given real number is defined by $a_{n+1} = 1 - \frac{1}{a_{n}}$.

- (i) For the case when $a_1 = 2$, find a_2, a_3 and a_4 . Describe the behaviour of this sequence [3]
- (ii) For the case when $a_1 = k$, where k is an integer greater than 1, find a_2 in terms of k as a single fraction. Find also a_3 in its simplest form and hence deduce that $a_4 = k$. [4]
- (iii) Show that $a_2a_3a_4 = -1$ for any integer k.

(iv) When
$$a_1 = 2$$
 evaluate $\sum_{i=1}^{99} a_i$. [3]

[2]