

# Mark Scheme (Results)

Summer 2016

Pearson Edexcel GCE in Core Mathematics 2 (6664/01)



# **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

## Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <a href="https://www.pearson.com/uk">www.pearson.com/uk</a>

Summer 2016 Publications Code 6664\_01\_1606\_MS All the material in this publication is copyright © Pearson Education Ltd 2016

### General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

# PEARSON EDEXCEL GCE MATHEMATICS

## General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt{}$  will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- \* The answer is printed on the paper or ag- answer given
- L or d... The second mark is dependent on gaining the first mark

PMT

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
  - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
  - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

## **General Principles for Core Mathematics Marking**

(But note that specific mark schemes may sometimes override these general principles).

#### Method mark for solving 3 term quadratic:

#### 1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where  $|pq| = |c|$ , leading to x = ...

 $(ax^2+bx+c) = (mx+p)(nx+q)$ , where pq = |c| and |mn| = |a|, leading to  $x = \dots$ 

#### 2. Formula

Attempt to use the correct formula (with values for a, b and c).

#### 3. Completing the square

Solving  $x^2 + bx + c = 0$ :  $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$ ,  $q \neq 0$ , leading to  $x = \dots$ 

#### Method marks for differentiation and integration:

#### 1. Differentiation

Power of at least one term decreased by 1. ( $x^n \rightarrow x^{n-1}$ )

#### 2. Integration

Power of at least one term increased by 1. ( $x^n \rightarrow x^{n+1}$ )

#### Use of a formula

PMT

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

#### Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

| Question<br>Number  | Scheme                                                                                                                                                                                                                                                                                                                    | Marks     |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1.                  | $r = \frac{3}{4}, S_4 = 175$                                                                                                                                                                                                                                                                                              |           |
| (a)<br>Way 1        | $\frac{a\left(1-\left(\frac{3}{4}\right)^{4}\right)}{1-\frac{3}{4}} \text{ or } \frac{a\left(1-\frac{3}{4}^{4}\right)}{1-\frac{3}{4}} \text{ or } \frac{a\left(1-0.75^{4}\right)}{1-0.75} \qquad \qquad \text{Substituting } r = \frac{3}{4} \text{ or } 0.75 \text{ and } n = 4$<br>into the formula for $S_n$           | M1        |
|                     | $175 = \frac{a\left(1-\left(\frac{3}{4}\right)^4\right)}{1-\frac{3}{4}} \Rightarrow a = \frac{175\left(1-\frac{3}{4}\right)}{\left(1-\left(\frac{3}{4}\right)^4\right)} \left\{ \Rightarrow a = \frac{\left(\frac{175}{4}\right)}{\left(\frac{175}{256}\right)} \Rightarrow \right\} \underline{a = 64}^* $ Correct proof | A1*       |
| (a)<br>Way 2        | $a + a\left(\frac{3}{4}\right) + a\left(\frac{3}{4}\right)^2 + a\left(\frac{3}{4}\right)^3 \qquad \qquad a + a\left(\frac{3}{4}\right) + a\left(\frac{3}{4}\right)^2 + a\left(\frac{3}{4}\right)^3$                                                                                                                       | [2]<br>M1 |
|                     | $\frac{175}{64}a = 175 \left( \Rightarrow a = \frac{175}{\left(\frac{175}{64}\right)} \right) \Rightarrow \underline{a = 64}^{*}$<br>or 2.734375 <i>a</i> =175 $\Rightarrow \underline{a = 64}$                                                                                                                           | A1*       |
|                     |                                                                                                                                                                                                                                                                                                                           | [2]       |
| (a)<br><b>Way 3</b> | $\{S_4 = \} \frac{64\left(1 - \left(\frac{3}{4}\right)^4\right)}{1 - \frac{3}{4}} \text{ or } \frac{64\left(1 - \frac{3}{4}^4\right)}{1 - \frac{3}{4}} \text{ or } \frac{64\left(1 - 0.75^4\right)}{1 - 0.75} $ Applying the formula for $S_n$ with $r = \frac{3}{4}$ , $n = 4$ and $a$ as 64.                            | M1        |
|                     | = 175 so $a = 64^*$ Obtains 175 with no errors seen and concludes $a = 64^*$ .                                                                                                                                                                                                                                            | A1*       |
|                     |                                                                                                                                                                                                                                                                                                                           | [2]       |
| (b)                 | $\{S_{\infty}\} = \frac{64}{\left(1 - \frac{3}{4}\right)}; = 256 \qquad \qquad S_{\infty} = \frac{(\text{then } a)}{1 - \frac{3}{4}} \text{ or } \frac{64}{1 - \frac{3}{4}}$                                                                                                                                              | M1;       |
|                     | (4) 256                                                                                                                                                                                                                                                                                                                   | Alcao     |
| (c)                 | Writes down either " $64'' \left(\frac{3}{4}\right)^8$ or awrt 6.4 or<br>$\{D = T_9 - T_{10} = \} 64 \left(\frac{3}{4}\right)^8 - 64 \left(\frac{3}{4}\right)^9$ " $64'' \left(\frac{3}{4}\right)^9$ or awrt 4.8, using $a = 64$ or their $a$                                                                             | M1        |
|                     | A correct expression for the difference<br>(i.e. $\pm (T_9 - T_{10})$ ) using $a = 64$ or their $a$ .                                                                                                                                                                                                                     | dM1       |
|                     | $\left\{ = 64 \left(\frac{3}{4}\right)^8 \left(\frac{1}{4}\right) = 1.6018066 \right\} = \underline{1.602} (3dp) $ 1.602 or -1.602                                                                                                                                                                                        | A1 cao    |
|                     |                                                                                                                                                                                                                                                                                                                           | [3]       |
|                     |                                                                                                                                                                                                                                                                                                                           | 7         |

|               |         | Question 1 Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|---------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| <b>1.</b> (a) |         | Allow invisible brackets around fractions throughout all parts of this question.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|               | M1      | There are three possible methods as described above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|               | A1      | Note that this is a "show that" question with a printed answer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|               |         | In Way 1 this mark usually requires $a = p/q$ where p and q may be unsimplified brackets from the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|               |         | formula (or could be 11200/175 for example) as an intermediate step before the conclusion $a = 64$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|               |         | Exceptions include $a = 1/5/4 + 256/1/5$ i.e. multiplication by reciprocal rather than division or 1/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|               |         | = 1/3d/04 followed by the obvious $a = 04$ These also get A1<br>In "reverse" methods such as Way 3 we need a conclusion "as $a = 64$ " or some implication that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|               |         | In reverse methods such as way 5 we need a conclusion so $a = 64$ of some implication that their argument is reversible. Also, a conclusion can be implied from a preamble, eq: "If I assume a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|               |         | - 64 then find $S = 175$ as given this implies $a = 64$ as required"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|               |         | This is a show that question and there should be no loss of accuracy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|               |         | In all the methods <b>if</b> decimals are used there should <b>not be rounding</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|               |         | If 0.68359375 appears this is correct. If it is rounded it would not give the exact answer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|               |         | 64(1-0.31640625) or 43.75 are each correct – if they are rounded then treat this as incorrect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|               |         | e g Way 3: "43 75/0.25 = 175 so $a = 64$ is A1" but "43/0.25 = 175 so $a = 64$ is A0" and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|               |         | $(44/0.25 = 175 \text{ so } a = 64 \text{ is } A0)^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|               |         | Yet another <b>variant on Way 3</b> : take a=64 then find the next 3 terms as 48, 36, 27 then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|               |         | add 64+48+36+27 to get 175. Again need conclusion that $a = 64$ or some implication that their                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|               |         | argument is reversible. Otherwise M1 A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| (b)           | M1      | $S = \frac{64}{100}$ or (their <i>a</i> found in part ( <i>a</i> ))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| (0)           | IVII    | $1 - \frac{3}{4}$ $1 - \frac{3}{4}$ $1 - \frac{3}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|               | A1      | 256 cao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|               | ND      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| (C)           | NB      | Using Sum of 10 terms minus Sum of 9 terms is NOT a misread Scores MUMUAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|               | M1      | Can be <b>implied.</b> Writes down either $64\left(\frac{3}{2}\right)^{\circ}$ or $64\left(\frac{3}{2}\right)^{\circ}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|               |         | $\mathbf{r} = (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)^{-1} (4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|               |         | using $a = 64$ (or their <i>a</i> found in part (a)).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|               | Note    | Note Ignore candidate's labelling of terms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|               | Note    | Note $64^{\binom{3}{8}} - 6407226563$ and $64^{\binom{3}{9}} - 4805410022$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|               | note    | ore $64 \begin{pmatrix} -4 \\ -4 \end{pmatrix} = 6.407226563$ and $64 \begin{pmatrix} -4 \\ -4 \end{pmatrix} = 4.805419922$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|               | dM1     | <b>1M1</b> This is dependent on previous M mark and can be implied. Either                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|               |         | $64\left(\frac{3}{2}\right)^{8} - 64\left(\frac{3}{2}\right)^{9}$ or $64\left(\frac{3}{2}\right)^{9} - 64\left(\frac{3}{2}\right)^{8}$ or awrt 6.4 – awrt 4.8, using $a = 64$ (or their <i>a</i> from part (a))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|               |         | $\binom{1}{4}$ $\binom{1}$ |  |  |  |
|               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|               | Note    | $1^{st}$ M1 and $2^{nd}$ M1 can be implied by the value of their                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|               |         | difference = "their <i>a</i> found in part (a)" $\times \frac{3^{\circ}}{10} \approx \frac{\text{"their } a \text{ found in part (a)"}}{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|               |         | $4^{2}$ 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|               | Note    | Either $64\left(\frac{3}{2}\right)^{2} - 64\left(\frac{3}{2}\right)^{10}$ or $64\left(\frac{3}{2}\right)^{10} - 64\left(\frac{3}{2}\right)^{2}$ is $1^{\text{st}}$ M1, $2^{\text{nd}}$ M0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|               |         | (4) $(4)$ $(4)$ $(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|               | Al      | 1.602 or -1.602 cao (This answer with no working is MIMIAI) But 1.6 with no working is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|               |         | M0M0A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|               |         | $(1)$ 1 $(2)^8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|               | Note    | $\left\{ D = \frac{1}{2}T_{q} \Rightarrow \right\} D = \frac{1}{2}(64) \left(\frac{3}{2}\right)$ is 1 <sup>st</sup> M1, 2 <sup>nd</sup> M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|               | Special | Obtains awrt 6.4, then obtains awrt 4.8 but rounds to 6 – 5 when subtracting – award M1M1A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|               | case    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |

| Question<br>Number |                                                                                                  | Scheme                                                                                                                                                                                          | Marks         |  |
|--------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|
|                    | y = 8 - 2                                                                                        | $2^{x-1}$ , 0,, x,, 4                                                                                                                                                                           |               |  |
| <b>2.</b> (a)      | 7                                                                                                | 7                                                                                                                                                                                               | B1 cao        |  |
|                    |                                                                                                  |                                                                                                                                                                                                 | [1]           |  |
|                    |                                                                                                  | Outside brackets $\frac{1}{2} \times 1$ or $\frac{1}{2}$                                                                                                                                        | B1;           |  |
| (b)                | $(\int^4 (8-2)^4)$                                                                               | $2^{x-1}$ dx $\approx$ $\frac{1}{2} \times 1; \times \{7.5 + 2(\text{"their } 7 + 6 + 4) + 0\}$ For structure of trapezium                                                                      |               |  |
|                    | $(\mathbf{J}_0)$                                                                                 | $rule\{\dots,\dots\}$ for a                                                                                                                                                                     | <u>M1</u>     |  |
|                    |                                                                                                  | candidate's y-ordinates.                                                                                                                                                                        |               |  |
|                    | $\left\{=\frac{1}{2}\times 4\right\}$                                                            | 1.5 = 20.75 o.e. 20.75                                                                                                                                                                          | A1 <b>cao</b> |  |
|                    | ( 2                                                                                              | J                                                                                                                                                                                               | [3]           |  |
| (c)                | Area(R)                                                                                          | $= "20.75" - \frac{1}{(7.5)(4)}$                                                                                                                                                                | M1            |  |
|                    |                                                                                                  | - 575                                                                                                                                                                                           | A 1 app       |  |
|                    |                                                                                                  | - 5.75 - 5.75                                                                                                                                                                                   | A1 cao<br>[2] |  |
|                    |                                                                                                  |                                                                                                                                                                                                 | 6             |  |
|                    |                                                                                                  | Question 2 Notes                                                                                                                                                                                |               |  |
| (a)                | B1                                                                                               | For 7 only                                                                                                                                                                                      |               |  |
| (b)                | D1                                                                                               | For using $\frac{1}{2} \times 1$ or $\frac{1}{2}$ or equivalent                                                                                                                                 |               |  |
| (0)                | ы<br>М1                                                                                          | Production $\frac{1}{2} \times 1$ of $\frac{1}{2}$ of equivalent.<br>Products the correct $\begin{pmatrix} \\ \\ \end{pmatrix}$ bracket structure. It needs the 7.5 stated but the 0 may be ome | itted The     |  |
|                    | 1,11                                                                                             | inner bracket needs to be multiplied by 2 and to be the summation of the remaining y val                                                                                                        | ues in the    |  |
|                    |                                                                                                  | table with no additional values.                                                                                                                                                                | ues in the    |  |
|                    |                                                                                                  | If the only mistake is a copying error or is to omit one value from 2nd bracket this may be a clip and the M mark be                                                                            | e regarded    |  |
|                    |                                                                                                  | as a slip and the M mark can be allowed (An extra repeated term forfeits the M mark how (unless it is 0)). M0 is awarded if values used in brackets are x values instead of y values            |               |  |
|                    | A1                                                                                               | For 20.75 or fraction equivalent e.g. $20\frac{3}{4}$ or $\frac{83}{4}$                                                                                                                         |               |  |
|                    | Note NB: Separate trapezia may be used : B1 for 0.5, M1 for $1/2 h(a + b)$ used 3 or 4 times The |                                                                                                                                                                                                 |               |  |
|                    | Special                                                                                          | Bracketing mistake $0.5 \times (7.5 + 0) + 2($ their $7 + 6 + 4)$ scores B1 M1 A0 unless the final                                                                                              | l answer      |  |
|                    | case:                                                                                            | implies that the calculation has been done correctly (then full marks can be given). An ar                                                                                                      | nswer of      |  |
|                    | Common                                                                                           | 37.75 usually indicates this error.                                                                                                                                                             | (1)           |  |
|                    | error:                                                                                           | Many candidates use $\frac{1}{2} \times \frac{1}{5}$ and score BO Then they proceed with $\frac{7.5 + 2(1 + 1)^{-1} + 6 - 1}{5}$                                                                | +4)+0         |  |
|                    |                                                                                                  | and score M1 This usually gives 16.6 for B0M1A0                                                                                                                                                 |               |  |
| (c)                | M1                                                                                               | their answer to (b) – area of triangle with base 4 and height 7.5 or alternative correct me                                                                                                     | thod          |  |
|                    |                                                                                                  | e.g. their answer to (b) $-\int_{0}^{4} \left(7.5 - \frac{7.5}{4}x\right) dx$ (Even if this leads to a negative answer) This                                                                    | may be        |  |
|                    |                                                                                                  | implied by a correct answer or by an answer where they have subtracted 15 from their an                                                                                                         | iswer to      |  |
|                    | A 1                                                                                              | part (b). Must use answer to part (b).<br>5 75 or fraction equivalent e $g = 5^3$ or $2^3$                                                                                                      |               |  |
|                    | AI                                                                                               | 5.75 or fraction equivalent e.g. $J_{\frac{1}{4}}^{2} \partial r = \frac{1}{4}$                                                                                                                 |               |  |
|                    |                                                                                                  |                                                                                                                                                                                                 |               |  |

| Question<br>Number | Scheme                                                                      |                                                             | Marks        |
|--------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------|--------------|
| 3.                 | <i>P</i> (7, 8) and <i>Q</i> (10, 13)                                       |                                                             |              |
| (a)                | $\{PQ =\} \sqrt{(7-10)^2 + (8-13)^2} \text{ or } \sqrt{(10-7)^2}$           | $+(13-8)^2$ Applies distance formula.<br>Can be implied.    | M1           |
|                    | $\{PQ\} = \sqrt{34}$                                                        | $\sqrt{34}$ or $\sqrt{17}.\sqrt{2}$                         | A1           |
|                    |                                                                             |                                                             | [2]          |
| ( <b>b</b> )       | $( ( \overline{)})^2$                                                       | $(x \pm 7)^2 + (y \pm 8)^2 = k,$                            | M1           |
| (0)<br>Wav 1       | $(x-7)^{2} + (y-8)^{2} = 34 \text{ (or } (\sqrt{34}) \text{)}$              | where <i>k</i> is a positive <u>value</u> .                 |              |
| tt uj 1            |                                                                             | $(x-7)^2 + (y-8)^2 = 34$                                    | A1 oe        |
|                    |                                                                             |                                                             | [2]          |
| ( <b>b</b> )       |                                                                             | $x^2 + y^2 \pm 14x \pm 16y + c = 0,$                        | M1           |
| $\mathbf{Wav} 2$   | $x^2 + y^2 - 14x - 16y + 79 = 0$                                            | where $c$ is any <u>value</u> < 113.                        |              |
| vv ug =            |                                                                             | $x^2 + y^2 - 14x - 16y + 79 = 0$                            | A1 oe        |
|                    |                                                                             |                                                             | [2]          |
| (c)<br>Way 1       | $\{\text{Gradient of radius}\} = \frac{13-8}{10-7} \text{ or } \frac{5}{3}$ | This must be seen or implied in part (c).                   | B1           |
|                    | 1 $($ $2$ $)$                                                               | Using a perpendicular gradient method on their              |              |
|                    | Gradient of tangent $= -\frac{1}{2} \left( = -\frac{3}{5} \right)$          | gradient So Gradient of tangent                             | M1           |
|                    | m(5)                                                                        | gradient of radius                                          |              |
|                    | $y - 13 = -\frac{3}{5}(x - 10)$                                             | y - 13 = (their changed gradient)(x - 10)                   | M1           |
|                    | 3x + 5y - 95 = 0                                                            | 3x + 5y - 95 = 0 o.e.                                       | A1           |
|                    |                                                                             |                                                             | [4]          |
| (c)<br>Way 2       | $2(x-7) + 2(y-8)\frac{dy}{dx} = 0$                                          | Correct differentiation (or equivalent).<br>Seen or implied | B1           |
|                    |                                                                             | Substituting <b>both</b> $x = 10$ and $y = 13$ into a       |              |
|                    | $2(10-7) + 2(13-8)\frac{dy}{dx} = 0 \implies \frac{dy}{dx} = -\frac{5}{5}$  | valid differentiation to find a value for $dy$              | M1           |
|                    | dx $dx$ $3$                                                                 | $\frac{dx}{dx}$                                             |              |
|                    | $y - 13 = -\frac{3}{5}(x - 10)$                                             | y - 13 = (their gradient)(x - 10)                           | M1           |
|                    | 3x + 5y - 95 = 0                                                            | 3x + 5y - 95 = 0 o.e.                                       | A1           |
|                    |                                                                             | ······                                                      | [4]          |
| (c)                |                                                                             | 10x + 13y - 7(x + 10) - 8(y + 13) + 79 = 0                  | B1           |
| Way 3              | 10x + 13y - 7(x + 10) - 8(y + 13) + 79 = 0                                  | 10x + 13y - 7(x + 10) - 8(y + 13) + c = 0                   | M2           |
|                    |                                                                             | where <i>c</i> is any <u>value</u> <113                     | 1V1 <i>2</i> |
|                    | 3x + 5y - 95 = 0                                                            | 3x + 5y - 95 = 0 o.e.                                       | A1           |
|                    |                                                                             |                                                             | [4]          |
|                    |                                                                             |                                                             | 8            |

|     |                    | Question 3 Notes                                                                                                                                                                                                   |
|-----|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a) | M1                 | Allow for $\{PQ =\} \sqrt{(7-10)^2 + (8-13)^2}$ or for $\{PQ =\} \sqrt{3^2 + 5^2}$ . Can be implied by answer.                                                                                                     |
|     | A1                 | Need to see $\sqrt{34}$ . You can ignore subsequent work so $\sqrt{34}$ followed by 5.83 earns M1 A1, but                                                                                                          |
|     |                    | $\{PQ =\} \sqrt{3^2 + 5^2} = 5.83$ , with no exact value for the answer given, earns M1A0. Allow                                                                                                                   |
|     |                    | $\pm\sqrt{34}$ this time.                                                                                                                                                                                          |
|     |                    | NB Some use equation of circle to find this distance Achieving $\sqrt{34}$ gets M1A1                                                                                                                               |
|     |                    | Others find half of their $\pm\sqrt{34}$ . Do not isw here as it is an error – confusing <i>d</i> with diameter.<br>Give M1A0                                                                                      |
| (b) | M1                 | Either of the correct approaches for equation of circle (as shown on scheme)                                                                                                                                       |
|     | A1                 | Correct equation (two are shown and any correct equivalent is acceptable)                                                                                                                                          |
| (c) |                    |                                                                                                                                                                                                                    |
|     |                    | A correct start to finding the gradient of the tangent (see each scheme)                                                                                                                                           |
|     | B1                 | Complete method for finding the gradient of the tangent (see each scheme) Where implicit differentiation has been used the only slips allowed here should be sign slips.                                           |
|     | 1 <sup>st</sup> M1 | Correct attempt at line equation for tangent at correct point (10, 13) with <b>their tangent</b> gradient.<br>If the $y = mx + c$ method is used to find the equation, this M1 is earned at the point where the x- |
|     | 2 <sup>nd</sup> M1 | and y-values are substituted to find c e.g. $13 = -3/5 \times 10 + c$                                                                                                                                              |
|     |                    | Accept any correct answer of the required format; so integer multiple of $3x + 5y - 95 = 0$ or                                                                                                                     |
|     |                    | 3x - 95 + 5y = 0 or $-3x - 5y + 95 = 0$ (must include "=0") e.g. $6x + 10y - 190 = 0$ earns A1<br>Also allow $5y + 3x - 95 = 0$ etc                                                                                |
|     | A1                 |                                                                                                                                                                                                                    |
|     | Common<br>error    | $\frac{dy}{dx} = 2(x-7) + 2(y-8) = 6 + 10 = 16 \text{ so } (y-13) = 16(x-10) \text{ is marked B0 M0 M1 A0 (Way 2)}$                                                                                                |

| Question<br>Number | Scheme                                                                                                                                                                     |                                                                                                                                                                                                                         |              |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|
| 4.                 | $f(x) = 6x^3 + 13x^2 - 4$                                                                                                                                                  |                                                                                                                                                                                                                         |              |  |
| (a)                | $f\left(-\frac{3}{2}\right) = 6\left(-\frac{3}{2}\right)^3 + 13\left(-\frac{3}{2}\right)^2 - 4 = 5$ Attempting $f\left(-\frac{3}{2}\right)$ or $f\left(\frac{3}{2}\right)$ |                                                                                                                                                                                                                         |              |  |
|                    | ( 2)                                                                                                                                                                       | 5                                                                                                                                                                                                                       | A1 cao       |  |
|                    |                                                                                                                                                                            | Attempts $f(-2)$ .                                                                                                                                                                                                      | M1           |  |
| (b)                | f(-2) =                                                                                                                                                                    | $6(-2)^3 + 13(-2)^2 - 4$<br>f(-2) = 0 with no sign or substitution errors                                                                                                                                               | . 1          |  |
|                    | = 0, <b>and</b>                                                                                                                                                            | so $(x + 2)$ is a factor. and for conclusion.                                                                                                                                                                           | AI           |  |
|                    |                                                                                                                                                                            | (-, -2)                                                                                                                                                                                                                 | [2]          |  |
| (c)                | $f(x) = \{(x) = (x) = (x) \}$                                                                                                                                              | $(x+2)(6x^2+x-2)$                                                                                                                                                                                                       | MI AI        |  |
|                    | = (x                                                                                                                                                                       | (2x - 1)(3x + 2)                                                                                                                                                                                                        | MI AI<br>[4] |  |
|                    |                                                                                                                                                                            |                                                                                                                                                                                                                         | 8            |  |
|                    | <b>.</b>                                                                                                                                                                   | Question 4 Notes                                                                                                                                                                                                        |              |  |
|                    | Note                                                                                                                                                                       | Long division scores no marks in part (a). The <u>remainder theorem</u> is required.                                                                                                                                    |              |  |
| (a)                | M1                                                                                                                                                                         | Attempting $f\left(-\frac{3}{2}\right)$ or $f\left(\frac{3}{2}\right)$ . $6\left(-\frac{3}{2}\right) + 13\left(-\frac{3}{2}\right) - 4$ or $6\left(-\frac{3}{2}\right) + 13\left(-\frac{3}{2}\right) - 4$ is so         | ufficient    |  |
|                    | A1                                                                                                                                                                         | 5 cao                                                                                                                                                                                                                   |              |  |
| (b)                | M1                                                                                                                                                                         | Attempting $f(-2)$ . (This is <b>not</b> given for $f(2)$ )                                                                                                                                                             |              |  |
|                    | A1                                                                                                                                                                         | Must correctly show $f(-2) = 0$ and give a conclusion <i>in part (b) only</i> . No simplification                                                                                                                       | n of terms   |  |
|                    | Note                                                                                                                                                                       | is required here.<br>Stating "hence factor" or "it is a factor" or a "tick" or "QED" are possible conclusions.<br>Also a conclusion can be implied from a <u>preamble</u> , eg: "If $f(-2) = 0$ , $(x + 2)$ is a factor | r"           |  |
|                    |                                                                                                                                                                            | Long division scores no marks in part (b). The <u>factor theorem</u> is required.                                                                                                                                       |              |  |
| (c)                | 1 <sup>st</sup> M1                                                                                                                                                         | Attempting to divide by $(x + 2)$ leading to a quotient which is quadratic with at least two terms                                                                                                                      |              |  |
|                    |                                                                                                                                                                            | beginning with first term of $\pm 6x^2$ + linear or constant term.                                                                                                                                                      |              |  |
|                    |                                                                                                                                                                            | Or $f(x) = (x+2)(\pm 6x^2 + \text{linear and/or constant term})$ (This may be seen in part (b) where candid not use factor theorem and might be referred to here)                                                       | lates did    |  |
|                    | 1 <sup>st</sup> A1                                                                                                                                                         | $(6x^2 + x - 2)$ seen as quotient or as factor. If there is an error in the division resulting in                                                                                                                       | a            |  |
|                    |                                                                                                                                                                            | remainder give A0, but allow recovery to gain next two marks if $(6x^2 + x - 2)$ is used                                                                                                                                |              |  |
|                    | 2 <sup>nd</sup> M1<br>A1                                                                                                                                                   | For a <i>valid</i> attempt to factorise <b>their</b> three term quadratic.<br>(x + 2)(2x - 1)(3x + 2) and needs all three factors on the same line                                                                      |              |  |
|                    | (x + 2)(2x - 1)(5x + 2) and needs an uncertactors on the same line.<br>Ignore subsequent work (such as a <b>solution</b> to a quadratic equation)                          |                                                                                                                                                                                                                         |              |  |
|                    | Special                                                                                                                                                                    | Calculator methods:                                                                                                                                                                                                     |              |  |
|                    | cases                                                                                                                                                                      | Award M1A1M1A1 for correct answer $(x + 2)(2x - 1)(3x + 2)$ with no working.                                                                                                                                            |              |  |
|                    |                                                                                                                                                                            | Award M1A0M1A0 for either $(x + 2)(2x + 1)(3x + 2)$ or $(x + 2)(2x + 1)(3x - 2)$ or<br>(x + 2)(2x - 1)(3x - 2) with no working (At least one bracket incorrect)                                                         |              |  |
|                    | (x + 2)(2x - 1)(3x - 2) with no working. (At least one bracket incorrect)<br>1 2                                                                                           |                                                                                                                                                                                                                         |              |  |
|                    |                                                                                                                                                                            | Award M1A1M1A1 for $x = -2, \frac{1}{2}, -\frac{2}{3}$ followed by $(x + 2)(2x - 1)(3x + 2)$ .                                                                                                                          |              |  |
|                    |                                                                                                                                                                            | Award M0A0M0A0 for a candidate who writes down $x = -2, \frac{1}{2}, -\frac{2}{3}$ giving no factors.                                                                                                                   |              |  |
|                    |                                                                                                                                                                            | Award M1A1M1A1 for $6(x + 2)(x - \frac{1}{2})(x + \frac{2}{3})$ or $2(x + 2)(x - \frac{1}{2})(3x + 2)$ or equivalent                                                                                                    |              |  |
|                    |                                                                                                                                                                            | Award SC: M1A0M1A0 for $x = -2$ , $\frac{1}{2}$ , $-\frac{2}{3}$ followed by $(x + 2)(x - \frac{1}{2})(x + \frac{2}{3})$ .                                                                                              |              |  |

| Question<br>Number  | Scheme                                                                                                            |                                                                                                                       | Marks     |
|---------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------|
| 5.                  | (a) $(2-9x)^4 = 2^4 + {}^4C_1 2^3 (-9x) + {}^4C_2 2^2 (-9x)^2$ , (b) $f(x) = (1+kx)(2-9x)^4 = A - 232x + Bx^2$    |                                                                                                                       |           |
| (a)                 | First term of 16 in their final series                                                                            |                                                                                                                       | B1        |
| Way 1               | At least one of $({}^{4}C_{1} \times \times x)$ or $({}^{4}C_{2} \times \times x^{2})$                            |                                                                                                                       | M1        |
|                     | At least one of $-288x$ or $+1944x^2$                                                                             |                                                                                                                       |           |
|                     | =(16) - 288x + 1944x                                                                                              | Both $-288x$ and $+1944x^2$                                                                                           | A1        |
|                     |                                                                                                                   |                                                                                                                       | [4]       |
| (a)                 | $(2-9x)^4 = (4-36x+81x^2)(4-36x+81x^2)$                                                                           |                                                                                                                       |           |
|                     |                                                                                                                   | First term of 16 in their final series                                                                                | B1        |
|                     |                                                                                                                   | Attempts to multiply a 3 term                                                                                         |           |
| Way 2               | $= 16 - 144x + 324x^2 - 144x + 1296x^2 + 324x^2$                                                                  | quadratic by the same 3 term                                                                                          | M1        |
|                     |                                                                                                                   | $r$ or at least 2 terms in $r^2$                                                                                      |           |
|                     |                                                                                                                   | At least one of $-288x$ or $\pm 1944x^2$                                                                              | A1        |
|                     | $= (16) - 288x + 1944x^2$                                                                                         | 1000000000000000000000000000000000000                                                                                 | A 1       |
|                     |                                                                                                                   | $10001 - 200\lambda$ and $+ 1944\lambda$                                                                              | A1<br>[4] |
| ( )                 | $( 0)^4$                                                                                                          |                                                                                                                       |           |
| (a)<br><b>Way 3</b> | $\left\{ (2-9x)^4 = \right\} 2^4 \left( 1 - \frac{9}{2}x \right)$                                                 | First term of 16 in final series                                                                                      | B1        |
|                     | $\begin{pmatrix} & ( & 0 & ) & A(2) \begin{pmatrix} & 0 & \rangle^2 \end{pmatrix}$                                | At least one of                                                                                                       |           |
|                     | $= 2^{4} \left( 1 + 4 \left( -\frac{9}{2}x \right) + \frac{4(3)}{2} \left( -\frac{9}{2}x \right) + \dots \right)$ | $\underbrace{\left(4\times\ldots\times x\right)\operatorname{or}\left(\frac{4(3)}{2}\times\ldots\times x^{2}\right)}$ | M1        |
|                     |                                                                                                                   | At least one of $-288x$ or $+1944x^2$                                                                                 | A1        |
|                     | $= (16) - 288x + 1944x^2$                                                                                         | Both $-288x$ and $+1944x^2$                                                                                           | A1        |
|                     |                                                                                                                   |                                                                                                                       | [4]       |
|                     | Parts (b), (c) and (d) may be marked together                                                                     |                                                                                                                       |           |
| (b)                 | <i>A</i> = "16"                                                                                                   | Follow through their value from (a)                                                                                   | B1ft      |
|                     |                                                                                                                   |                                                                                                                       | [1]       |
| (c)                 | $\left  \left\{ (1+kx)(2-9x)^{4} \right\} = (1+kx)(16-288x+\{1944x^{2}+\})$                                       | May be seen in part (b) or (d) and can be implied by work in                                                          | M1        |
| (C)                 |                                                                                                                   | parts(c) or(d).                                                                                                       | IVI I     |
|                     | <i>x</i> terms: $-288x + 16kx = -232x$                                                                            | <i>parts</i> (c) of (a).                                                                                              |           |
|                     | giving $16h  56 \rightarrow h$                                                                                    | , 7                                                                                                                   | . 1       |
|                     | giving, $10\kappa = 30 \implies \kappa = \frac{1}{2}$                                                             | $\frac{\kappa = -\frac{1}{2}}{2}$                                                                                     | AI        |
|                     |                                                                                                                   |                                                                                                                       | [2]       |
| (d)                 | $x^2$ terms: 1944 $x^2 - 288kx^2$                                                                                 |                                                                                                                       |           |
|                     | $S_0 = R - 1044 - 288(7) - 1044 - 1008 - 026$                                                                     | See notes                                                                                                             | M1        |
|                     | $50, \ \ B - 1944 - 200 \left(\frac{-}{2}\right); \ = 1944 - 1008 = 950$                                          | 936                                                                                                                   | A1        |
|                     |                                                                                                                   |                                                                                                                       | [2]       |
|                     |                                                                                                                   |                                                                                                                       | 9         |

|               |                    | Question 5 Notes                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                   |  |  |  |
|---------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| (a)<br>Ways 1 | B1 cao             | 16                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                   |  |  |  |
| and 3         | M1                 | Correct binomial coefficient associated with co                                                                                                                                                                                                                                                                                                                        | Correct binomial coefficient associated with correct power of x <i>i.e</i> $({}^{4}C_{1} \times \times x)$ or $({}^{4}C_{2} \times \times x^{2})$ |  |  |  |
|               |                    | 4(3) $(4)$ $(4)$ $(4)$ $(-1)$                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                   |  |  |  |
|               |                    | They may have 4 and 6 or 4 and $\frac{1}{2}$ or even                                                                                                                                                                                                                                                                                                                   | $\begin{pmatrix} 1 \end{pmatrix}$ and $\begin{pmatrix} 2 \end{pmatrix}$ as their coefficients. Allow missing                                      |  |  |  |
|               |                    | signs and brackets for the M marks.                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                   |  |  |  |
|               | 1 <sup>st</sup> A1 | At least one of $-288x$ or $+1944x^2$ (allow $+2$                                                                                                                                                                                                                                                                                                                      | 88x)                                                                                                                                              |  |  |  |
|               | 2 <sup>nd</sup> A1 | Both $-288x$ and $+1944x^2$ (May list terms see                                                                                                                                                                                                                                                                                                                        | parated by commas) Also full marks for correct                                                                                                    |  |  |  |
|               |                    | answer with no working here. Again allow $+-288x$                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                   |  |  |  |
|               | Note               | If the candidate then divides their final correct answer through by 8 or any other common factor then isw and mark correct series when first seen. So (a) B1M1A1A1 .It is likely that this approach will be followed by (b) B0, (c) M1A0, (d) M1A0 if they continue with their new series e.g. $2-36x + 283x^2 +$ (Do not ft the value 2 as a mark was awarded for 16) |                                                                                                                                                   |  |  |  |
| Way 2b        | Special            | Slight Variation on the solution given in the s                                                                                                                                                                                                                                                                                                                        | scheme                                                                                                                                            |  |  |  |
|               | Case               | $(2-9x)^4 = (2-9x)(2-9x)(4-36x+81x^2)$                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                   |  |  |  |
|               |                    | $= (2-9x)(8-108x+486x^2+)$                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                   |  |  |  |
|               |                    |                                                                                                                                                                                                                                                                                                                                                                        | First term of 16 <b>B1</b>                                                                                                                        |  |  |  |
|               |                    | $= 16 - 216x + 972x^2 - 72x + 972x^2$                                                                                                                                                                                                                                                                                                                                  | Multiplies out to give either<br>$2 \text{ terms in } x \text{ or } 2 \text{ terms in } x^2$ M1                                                   |  |  |  |
|               |                    |                                                                                                                                                                                                                                                                                                                                                                        | At least one of $-288x$ or $+1944x^2$ A1                                                                                                          |  |  |  |
|               |                    | $= (16) - 288x + 1944x^2 + \dots$                                                                                                                                                                                                                                                                                                                                      | Both $-288x$ and $+1944x^2$ A1                                                                                                                    |  |  |  |
|               |                    |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                   |  |  |  |
| (b)           | B1ft               | <b>Parts (b), (c) and (d) may be marked togethe</b><br>Must <b>identify</b> $A = 16$ or $A = their$ constant term<br>clearly their answer to part (b). If they expand to<br>not sufficient for this mark.                                                                                                                                                              | <b>r.</b><br>n found in part (a). Or may write just 16 if this is<br>heir series and have 16 as first term of a series it is                      |  |  |  |
| (c)           | M1                 | Candidate shows intention to multiply $(1+kx)$ by                                                                                                                                                                                                                                                                                                                      | y part of their series from (a)                                                                                                                   |  |  |  |
|               |                    | e.g. Just $(1 + kx)(16 - 288x +)$ or $(1 + kx)(16$                                                                                                                                                                                                                                                                                                                     | $5 - 288x + 1944x^2 +$ ) are fine for M1.                                                                                                         |  |  |  |
|               | Note               | This mark can also be implied by candidate mu<br>(or coefficients) in x. i.e. f.t. their $-288x + 16k$ .                                                                                                                                                                                                                                                               | Itiplying out to find <b>two terms</b><br>$x 	ext{ N.B.} - 288kx = -232x$ with no evidence of<br>factored series, as this is a method mark        |  |  |  |
|               | A1                 | $k = \frac{7}{2}$ o.e. so 3.5 is acceptable                                                                                                                                                                                                                                                                                                                            | actored series, as uns is a method mark                                                                                                           |  |  |  |
| (d)           | M1                 | 2<br>Multiplies out their $(1 + kx)(16 - 288x + 1944x)$                                                                                                                                                                                                                                                                                                                | $(2^{2} +)$ to give <b>exactly</b> two terms (or coefficients)                                                                                    |  |  |  |
|               |                    | in $x^2$ and attempts to find B using <b>these two</b> te                                                                                                                                                                                                                                                                                                              | rms and a numerical value of k.                                                                                                                   |  |  |  |
|               | A1                 | 936                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                   |  |  |  |
|               | Note               | Award A0 for $B = 936x^2$                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                   |  |  |  |
|               |                    | But allow A1 for $B = 936x^2$ followed by $B = 9$                                                                                                                                                                                                                                                                                                                      | 936 and treat this as a correction                                                                                                                |  |  |  |
|               |                    | Correct answers in parts (c) and (d) with no me                                                                                                                                                                                                                                                                                                                        | mou snown may be awarded full credit.                                                                                                             |  |  |  |

| Question<br>Number | Scheme                                                                                                                                               | Marks           |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 6.                 | $1 - 2\cos\left(\theta - \frac{\pi}{5}\right) = 0;  -\pi < \vartheta,  \pi$                                                                          |                 |
| (i)                | $\cos\left(\theta - \frac{\pi}{5}\right) = \frac{1}{2}$ Rearranges to give $\cos\left(\theta - \frac{\pi}{5}\right) = \frac{1}{2}$ or $-\frac{1}{2}$ | M1              |
|                    | At least one of $-\frac{2\pi}{15}$ or $-\frac{8\pi}{15}$ or $-24^\circ$ or 96° or awrt 1.68 or awrt -0.419                                           | A1              |
|                    | $\begin{array}{c} 0 = \left\{ -\frac{15}{15}, \frac{15}{15} \right\} \\ Both -\frac{2\pi}{15} \text{ and } \frac{8\pi}{15} \end{array}$              | A1              |
| NR                 |                                                                                                                                                      | [3]             |
| Misread            | Misreading $\frac{\pi}{5}$ as $\frac{\pi}{6}$ or $\frac{\pi}{3}$ (or anything else)– treat as misread so M1 A0 A0 is maximum mark                    |                 |
|                    | $4\cos^2 x + 7\sin x - 2 = 0, 0, x < 360^\circ$                                                                                                      |                 |
| (ii)               | $4(1 - \sin^2 x) + 7\sin x - 2 = 0$ Applies $\cos^2 x = 1 - \sin^2 x$                                                                                | M1              |
|                    | $4 - 4\sin^2 x + 7\sin x - 2 = 0$                                                                                                                    |                 |
|                    | $4\sin^2 x - 7\sin x - 2 = 0$ Correct 3 term, $4\sin^2 x - 7\sin x - 2 = 0$                                                                          | A1 oe           |
|                    | $(4\sin x + 1)(\sin x - 2) \{= 0\}$ , $\sin x =$ Valid attempt at solving and $\sin x =$                                                             | M1              |
|                    | $\sin x = -\frac{1}{4}$ , $\{\sin x = 2\}$ $\sin x = -\frac{1}{4}$ (See notes.)                                                                      | A1 cso          |
|                    | $x = awrt \{194.5, 345.5\}$ At least one of awrt 194.5 or awrt 345.5 or awrt 3.4 or awrt 6.0                                                         | Alft            |
|                    | awrt 194.5 <b>and</b> awrt 345.5                                                                                                                     | A1              |
|                    |                                                                                                                                                      | <u>[0]</u><br>9 |
| NB                 | Writing equation as $4\cos^2 x - 7\sin x - 2 = 0$ with a sign error should be marked by applying                                                     |                 |
| Misread            | the scheme as <b>it simplifies</b> the solution (do not treat as misread) Max mark is 3/6                                                            |                 |
|                    | $4(1 - \sin^2 x) - 7\sin x - 2 = 0$                                                                                                                  | M1              |
|                    | $4\sin^2 x + 7\sin x - 2 = 0$                                                                                                                        | A0<br>M1        |
|                    | $(4\sin x - 1)(\sin x + 2) = 0, \sin x = \dots$ Valid attempt at solving and $\sin x = \dots$                                                        | M1              |
|                    | $\sin x = +\frac{1}{4}, \{\sin x = -2\}$ $\sin x = \frac{1}{4}$ (See notes.)                                                                         | A0              |
|                    | <i>x</i> = awrt165.5                                                                                                                                 | A1ft            |
|                    | Incorrect answers                                                                                                                                    | AO              |

|      | Question 6 Notes     |                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| (i)  | M1                   | Rearranges to give $\cos\left(\theta - \frac{\pi}{5}\right) = \pm \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                      |  |  |
|      | Note                 | M1 can be implied by seeing either $\frac{\pi}{3}$ or 60° as a result of taking cos <sup>-1</sup> ().                                                                                                                                                                                                                                                                                                               |  |  |
|      | A1                   | Answers <b>may be in degrees or radians</b> for this mark and may have just one correct answer Ignore mixed units in working if correct answers follow (recovery)                                                                                                                                                                                                                                                   |  |  |
|      | A1                   | Both answers correct and in radians as multiples of $\pi = -\frac{2\pi}{15}$ and $\frac{8\pi}{15}$                                                                                                                                                                                                                                                                                                                  |  |  |
|      |                      | Ignore EXTRA solutions outside the range $-\pi < \theta \le \pi$ but lose this mark for extra solutions in this range.                                                                                                                                                                                                                                                                                              |  |  |
| (ii) | 1 <sup>st</sup> M1   | Using $\cos^2 x = 1 - \sin^2 x$ on the given equation. [Applying $\cos^2 x = \sin^2 x - 1$ , scores M0.]                                                                                                                                                                                                                                                                                                            |  |  |
|      | 1 <sup>st</sup> A1   | Obtaining a correct three term equation eg. either $4\sin^2 x - 7\sin x - 2 = 0$                                                                                                                                                                                                                                                                                                                                    |  |  |
|      |                      | or $-4\sin^2 x + 7\sin x + 2 = 0$ or $4\sin^2 x - 7\sin x = 2$ or $4\sin^2 x = 7\sin x + 2$ , etc.                                                                                                                                                                                                                                                                                                                  |  |  |
|      | 2 <sup>nd</sup> M1   | For a valid attempt at solving a 3TQ quadratic in sine. Methods include factorization, quadratic formula, completion of the square (unlikely here) and calculator. (See notes on page 6 for general principles on awarding this mark) Can use any variable here, $s$ , $y$ , $x$ or $sin x$ , and an attempt to find at least one of the solutions for sin $x$ . This solution may be outside the range for $sin x$ |  |  |
|      | 2 <sup>nd</sup> A1   | $\sin x = -\frac{1}{4}$ BY A CORRECT SOLUTION ONLY UP TO THIS POINT. Ignore extra answer                                                                                                                                                                                                                                                                                                                            |  |  |
|      |                      | of $\sin x = 2$ , but penalise if candidate states an incorrect result. e.g. $\sin x = -2$ .                                                                                                                                                                                                                                                                                                                        |  |  |
|      | Note                 | $\sin x = -\frac{1}{4}$ can be implied by later correct working if no errors are seen.                                                                                                                                                                                                                                                                                                                              |  |  |
|      | 3 <sup>rd</sup> A1ft | At least one of awrt 194.5 or awrt 345.5 or awrt 3.4 or awrt 6.0. This is a limited follow through.                                                                                                                                                                                                                                                                                                                 |  |  |
|      |                      | Only follow through on the error sin $x = \frac{1}{4}$ and allow for 165.5 special case (as this is equivalent                                                                                                                                                                                                                                                                                                      |  |  |
|      |                      | work) This error is likely to earn M1A1M1A0A1A0 so 4/6 or M1A0M1A0A1A0 if the quadratic had a sign slip.                                                                                                                                                                                                                                                                                                            |  |  |
|      | 4 <sup>th</sup> A1   | awrt 194.5 and awrt 345.5                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|      | Note                 | If there are any EXTRA solutions inside the range 0, $x < 360^{\circ}$ and the candidate would                                                                                                                                                                                                                                                                                                                      |  |  |
|      |                      | otherwise score FULL MARKS then withhold the final A1 mark.                                                                                                                                                                                                                                                                                                                                                         |  |  |
|      | Special              | Ignore EATKA solutions outside the range $0$ , $x < 500$ .<br>Rounding error Allow M1A1M1A1A1A0 for those who give two correct answers but                                                                                                                                                                                                                                                                          |  |  |
|      | Cases                | wrong accuracy e.g. awrt 194, 346 (Remove final A1 for this error)                                                                                                                                                                                                                                                                                                                                                  |  |  |
|      |                      | Answers in radians:- lose final mark so either or both of 3.4, 6.0 gets A1ftA0                                                                                                                                                                                                                                                                                                                                      |  |  |
|      |                      | It is possible to earn M1A0A1A1 on the final 4 marks if an error results fortuitously in $\sin x = -1/4$ then correct work follows.                                                                                                                                                                                                                                                                                 |  |  |

| Question<br>Number |                                                                                                                                                                                                                                                                                                                                                                         | Scheme                                                                                                                                                                                                                                                                                                           | Marks                |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| <b>7.</b> (a)      | $\left\{ \int \left( 3x - x^{\frac{3}{2}} \right)^2 \right\}$                                                                                                                                                                                                                                                                                                           | $\left. \int dx \right\} = \frac{3x^2}{2} - \frac{x^{\frac{5}{2}}}{\left(\frac{5}{2}\right)} \left\{ + c \right\} $ $\frac{3x \to \pm \lambda x^2 \text{ or } x^{\frac{3}{2}} \to \pm \mu x^{\frac{5}{2}}, \lambda, \mu \neq 0}{At \text{ least one term correctly integrated}}$ Both terms correctly integrated | M1 ~<br>A1<br>A1     |
| (b)                | $0 = 3x - x^{\frac{3}{2}}$                                                                                                                                                                                                                                                                                                                                              | $\Rightarrow 0 = 3 - x^{\frac{1}{2}} \text{ or } 0 = x \left(3 - x^{\frac{1}{2}}\right) \Rightarrow x = \dots$<br>Sets $y = 0$ , in order to find<br>the correct $x^{\frac{1}{2}} = 3$ or $x = 9$                                                                                                                | [3]<br>M1            |
|                    | $\begin{cases} \operatorname{Area}(S) = \end{cases}$                                                                                                                                                                                                                                                                                                                    | $\left[\frac{3x^2}{2} - \frac{2}{5}x^{\frac{5}{2}}\right]_0^9$                                                                                                                                                                                                                                                   |                      |
|                    | $=\left(\frac{3(9)^2}{2}-\right)$                                                                                                                                                                                                                                                                                                                                       | $\left(\frac{2}{5}\right)(9)^{\frac{5}{2}} - \{0\}$ Applies the limit 9 on an integrated function with <b>no wrong lower limit</b> .                                                                                                                                                                             | ddM1                 |
|                    | $\left\{=\left(\frac{243}{2}-\frac{4}{2}\right)\right\}$                                                                                                                                                                                                                                                                                                                | $\left \frac{486}{5}\right  - \{0\} = \frac{243}{10}$ or 24.3 $\frac{243}{10}$ or 24.3                                                                                                                                                                                                                           | A1<br>oe             |
|                    |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                  | [3]<br>6             |
|                    |                                                                                                                                                                                                                                                                                                                                                                         | Question 7 Notes                                                                                                                                                                                                                                                                                                 |                      |
| (a)                | M1                                                                                                                                                                                                                                                                                                                                                                      | Either $3x \to \pm \lambda x^2$ or $x^{\frac{3}{2}} \to \pm \mu x^{\frac{5}{2}}$ , $\lambda, \mu \neq 0$                                                                                                                                                                                                         |                      |
|                    | 1 <sup>st</sup> A1                                                                                                                                                                                                                                                                                                                                                      | At least one term correctly integrated. Can be simplified or un-simplified but power must be simplified. Then isw.                                                                                                                                                                                               | e                    |
|                    | 2 <sup>nd</sup> A1                                                                                                                                                                                                                                                                                                                                                      | Both terms correctly integrated. Can be un-simplified (as in the scheme) but the $n+1$ in each denominator and power should be a single number. (e.g. $2 - \text{not } 1+1$ ) Ignore subsequent we there are errors simplifying. Ignore the omission of " $+c$ ". Ignore integral signs in their an              | h<br>ork if<br>swer. |
| (b)                | 1 <sup>st</sup> M1                                                                                                                                                                                                                                                                                                                                                      | Sets $y = 0$ , and reaches the correct $x^{\frac{1}{2}} = 3$ or $x = 9$ (isw if $x^{\frac{1}{2}} = 3$ is followed by $x = \sqrt{2}$                                                                                                                                                                              | 3)                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                         | Just seeing $x = \sqrt{3}$ without the correct $x^{\frac{1}{2}} = 3$ gains M0. May just see $x = 9$ .                                                                                                                                                                                                            |                      |
|                    |                                                                                                                                                                                                                                                                                                                                                                         | Use of trapezium rule to find area is MOA0 as hence implies integration needed.                                                                                                                                                                                                                                  |                      |
|                    | <b>ddM1</b> This mark is dependent on the two previous method marks and needs both to have been awards. Sees the limit <b>9</b> substituted in an integrated function. (Do not follow through their value of $x$ ) I not need to see MINUS 0 but if another value is used as lower limit – this is M0. This mark may be implied by 9 in the limit and a correct answer. |                                                                                                                                                                                                                                                                                                                  | arded.<br>x) Do      |
|                    | A1                                                                                                                                                                                                                                                                                                                                                                      | $\frac{243}{10}$ or 24.3                                                                                                                                                                                                                                                                                         |                      |
|                    | Common<br>Error                                                                                                                                                                                                                                                                                                                                                         | <b>Common Error</b> $0 = 3x - x^{\frac{3}{2}} \Rightarrow x^{\frac{1}{2}} = 3 \text{ so } x = \sqrt{3}$<br><b>Then</b> uses limit $\sqrt{3}$ etc gains M1 M0 A0 so 1/3                                                                                                                                           |                      |

| Question<br>Number                                           | Scheme                                                                                                                                                                                                                           |                    |  |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|
| 8(i)                                                         | Two Ways of answering the question are given in part (i)                                                                                                                                                                         |                    |  |
| Way 1                                                        | $\log_3\left(\frac{3b+1}{a-2}\right) = -1$ or $\log_3\left(\frac{a-2}{3b+1}\right) = 1$ Applying the subtraction law of logarithms                                                                                               | M1                 |  |
|                                                              | $\frac{3b+1}{a-2} = 3^{-1} \left\{ = \frac{1}{3} \right\} \text{ or } \left( \frac{a-2}{3b+1} \right) = 3$ Making a correct connection between log base 3 and 3 to a power.                                                      | M1                 |  |
|                                                              | $\{9b+3=a-2 \Rightarrow\} \ b=\frac{1}{9}a-\frac{5}{9}$ $b=\frac{1}{9}a-\frac{5}{9}$ or $b=\frac{a-5}{9}$                                                                                                                        | A1 oe              |  |
|                                                              | In Way 2 a correct connection between log base 3 and "3 to a power" is used before applying the subtraction or addition law of logs                                                                                              | [3]                |  |
| (i)                                                          | Either $\log_3(3b+1) - \log_3(a-2) = -\log_3 3$ or $\log_3(3b+1) + \log_3 3 = \log_3(a-2)$                                                                                                                                       | $2^{nd}  M1$       |  |
| Way 2                                                        | $\log_3(3b+1) = \log_3(a-2) - \log_3 3 = \log_3\left(\frac{a-2}{3}\right) \text{ or } \log_3 3(3b+1) = \log_3(a-2)$                                                                                                              | 1 <sup>st</sup> M1 |  |
|                                                              | $\{3b+1=\frac{a-2}{3}\}\ b=\frac{1}{9}a-\frac{5}{9}$                                                                                                                                                                             | A1                 |  |
|                                                              |                                                                                                                                                                                                                                  | [3]                |  |
|                                                              | Five Ways of answering the question are given in part (ii)                                                                                                                                                                       |                    |  |
| (ii)                                                         | $32(2^{2x}) - 7(2^x) = 0$ Deals with power 5 correctly giving ×32                                                                                                                                                                | M1                 |  |
| Way 1<br>See also<br>common<br>approach<br>below in<br>notes | So, $2^x = \frac{7}{32}$ or $y = \frac{7}{32}$ or $y = \frac{7}{32}$ or awrt 0.219                                                                                                                                               | A1 oe<br>dM1       |  |
|                                                              | $x \log 2 = \log\left(\frac{7}{32}\right)$ or $x = \frac{\log\left(\frac{7}{32}\right)}{\log 2}$ or $x = \log_2\left(\frac{7}{32}\right)$ A valid method for solving $2^x = \frac{7}{32}$<br>Or $2^x = k$ to achieve $x = \dots$ |                    |  |
|                                                              | x = -2.192645 awrt $-2.19$                                                                                                                                                                                                       | A1                 |  |
|                                                              |                                                                                                                                                                                                                                  | [4]                |  |
|                                                              |                                                                                                                                                                                                                                  |                    |  |
|                                                              | Begins with $2^{2x+3} = 7(2^x)$ (for Way 2 and Way 3) (see notes below)                                                                                                                                                          |                    |  |
| (ii)<br>Wey 2                                                | Correct application of <b>aither</b> the power law <b>or</b> addition law of logarithms                                                                                                                                          | M1                 |  |
| way 2                                                        | $(2x+5)\log 2 = \log 7 + x\log 2$                                                                                                                                                                                                |                    |  |
|                                                              | the power <b>and</b> addition laws of logarithms.                                                                                                                                                                                | A1                 |  |
|                                                              | $2x\log 2 + 5\log 2 = \log 7 + x\log 2$                                                                                                                                                                                          |                    |  |
|                                                              | $\Rightarrow x = \frac{\log 7 - 5\log 2}{\log 2}$ Multiplies out, collects x terms to achieve $x =$                                                                                                                              | dM1                |  |
|                                                              | x = -2.192645 awrt $-2.19$                                                                                                                                                                                                       | A1                 |  |
|                                                              |                                                                                                                                                                                                                                  | [4]                |  |
|                                                              | Evidence of $\log_2$ and either $2^{2x+5} \rightarrow 2x+5$                                                                                                                                                                      | M1                 |  |
| (11)<br>Way 3                                                | $2x + 5 = \log_2 7 + x$ or $7(2^x) \to \log_2 7 + \log_2(2^x)$                                                                                                                                                                   | 1011               |  |
| , ay o                                                       | $2x + 5 = \log_2 7 + x$ oe.                                                                                                                                                                                                      | A1                 |  |
|                                                              | $2x - x = \log_2 7 - 5$                                                                                                                                                                                                          | JM1                |  |
|                                                              | $\Rightarrow x = \log_2 7 - 5$                                                                                                                                                                                                   | aNII               |  |
|                                                              | x = -2.192645 awrt $-2.19$                                                                                                                                                                                                       | A1                 |  |
|                                                              |                                                                                                                                                                                                                                  | [4]                |  |

| (ii)<br>Way 4        | $2^{2x+5} = 7(2^x) \Longrightarrow 2^{x+5} = 7$                                                                  |       |
|----------------------|------------------------------------------------------------------------------------------------------------------|-------|
| -                    | Evidence of log <sub>2</sub>                                                                                     | M1    |
|                      | $x + 5 = \log_2 7$ or $\frac{\log 7}{\log 2}$ and either $2^{x+5} \rightarrow x + 5$ or $7 \rightarrow \log_2 7$ | IVI I |
|                      | $x + 5 = \log_2 7 \text{ oe.}$                                                                                   | A1    |
|                      | $x = \log_2 7 - 5$ Rearranges to achieve $x =$                                                                   | dM1   |
|                      | x = -2.192645 awrt $-2.19$                                                                                       | A1    |
|                      |                                                                                                                  | [4]   |
| Way 5<br>(similar to | $2^{2x+5} = 2^{\log_2 7} (2^x)$ 7 is replaced by $2^{\log_2 7}$                                                  | M1    |
| Way 3)               | $2x + 5 = \log_2 7 + x  2x + 5 = \log_2 7 + x \text{ oe.}$                                                       | A1    |
|                      | $2x - x = \log_2 7 - 5$                                                                                          |       |
|                      | $\Rightarrow x = \log_2 7 - 5$                                                                                   | dM1   |
|                      | x = -2.192645 awrt $-2.19$                                                                                       | A1    |
|                      |                                                                                                                  | [4]   |
|                      |                                                                                                                  | 7     |

|      | Question 8 Notes                                |                                                                                                                                                                                                                                       |  |  |
|------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| (i)  | 1 <sup>st</sup> M1                              | M1 Applying either the addition or subtraction law of logarithms correctly to combine                                                                                                                                                 |  |  |
|      |                                                 | any <b>two</b> log terms into <b>one</b> log term.                                                                                                                                                                                    |  |  |
|      | 2 <sup>nd</sup> M1                              | For making a correct connection between log base 3 and 3 to a power.                                                                                                                                                                  |  |  |
|      | A1                                              | $b = \frac{1}{9}a - \frac{5}{9}$ or $b = \frac{a-5}{9}$ o.e. e.g. Accept $b = \frac{1}{3}\left(\frac{a}{3} - \frac{5}{3}\right)$ but not $b = \frac{a-2}{9} - \frac{3}{9}$ nor $b = \frac{\left(\frac{a}{3} - \frac{5}{3}\right)}{3}$ |  |  |
| (ii) | 1 <sup>st</sup> M1                              | First step towards solution – an equation with one side or other correct or one term dealt with                                                                                                                                       |  |  |
|      |                                                 | correctly (see five* possible methods above)                                                                                                                                                                                          |  |  |
|      | 1 <sup>st</sup> A1                              | Completely correct first step – giving a correct equation as shown above                                                                                                                                                              |  |  |
|      | dM1                                             | Correct complete method (all log work correct) and working to reach $x = in$ terms of logs                                                                                                                                            |  |  |
|      | and the                                         | reaching a correct expression or one where the only errors are slips solving linear equations                                                                                                                                         |  |  |
|      | $2^{nu}$ AI                                     | Accept answers which round to -2.19 If a second answer is also given this becomes A0                                                                                                                                                  |  |  |
|      | Special<br>Case in                              | Writes $\frac{\log_3(3b+1)}{\log_3(a-2)} = -1$ and proceeds to $\frac{3b+1}{a-2} = 3^{-1} \left\{ = \frac{1}{3} \right\}$ and to correct answer-Give                                                                                  |  |  |
|      | (i)                                             | M0M1A1 (special case)                                                                                                                                                                                                                 |  |  |
|      | Common                                          | Let $2^x = y$ Treat this as <b>Way 1</b> They get $32y^2 - 7y = 0$ for M1 and need to reach $y = \frac{7}{32}$ for A1                                                                                                                 |  |  |
|      | approach<br>to part<br>(ii)                     | Then back to <b>Way 1</b> as before. Any letter may be used for the new variable which I have called <i>y</i> .                                                                                                                       |  |  |
|      |                                                 | If they use x and obtain $x = \frac{7}{32}$ , this may be awarded M1A0M0A0                                                                                                                                                            |  |  |
|      |                                                 | Those who get $y^2 - 7y + 32 = 0$ or $y^7 - 7y = 0$ will be awarded M0,A0,M0,A0                                                                                                                                                       |  |  |
|      | Common<br>Present-<br>ation of<br>Work in<br>ii | <b>Many begin with</b> $\log(2^{2x+5}) - \log(7(2^x)) = 0$ . It is possible to reach this in two stages                                                                                                                               |  |  |
|      |                                                 | correctly so do not penalise this and award the full marks if they continue correctly as in <b>Way 2</b> .<br>If however the solution continues with $(2x+5)\log 2 - x\log 14 = 0$ or with                                            |  |  |
|      |                                                 | $(2x+5)\log 2 - 7x\log 2 = 0$ (both incorrect) then they are awarded M1A0M0A0 just getting                                                                                                                                            |  |  |
|      |                                                 | credit for the $(2x + 5) \log 2$ term.                                                                                                                                                                                                |  |  |
|      | Note                                            | N.B. The answer (+)2.19 results from "algebraic errors solving linear equations" leading to $2^x = \frac{32}{7}$ and gets M1A0M1A0                                                                                                    |  |  |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Marks                |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| <b>9.</b> (a)      | Area( <i>FEA</i> ) = $\frac{1}{2}x^2\left(\frac{2\pi}{2}\right)$ ; = $\frac{\pi x^2}{2}$<br>$\frac{1}{2}x^2 \times \left(\frac{2\pi}{3}\right)$ or $\frac{120}{360} \times \pi x^2$ simplified or unsimplified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1                   |
|                    | $\frac{2}{3} \begin{pmatrix} 3 \end{pmatrix} = 3 \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A1                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [2]                  |
|                    | Parts (b) and (c) may be marked together                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/1                  |
| (b)                | $\{A = \} \frac{1}{2}x^2 \sin 60^\circ + \frac{1}{2}\pi x^2 + 2xy$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |
|                    | $1000 = \frac{\sqrt{3}x^2}{4} + \frac{\pi x^2}{3} + 2xy \implies y = \frac{500}{x} - \frac{\sqrt{3}x}{8} - \frac{\pi x}{6}$ $\implies y = \frac{500}{x} - \frac{x}{24}(4\pi + 3\sqrt{3})  * \qquad \text{Correct proof.}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A1 *                 |
| (c)                | $\{P = \} x + x\theta + y + 2x + y \ \left\{ = 3x + \frac{2\pi x}{3} + 2y \right\}$<br>Correct expression in x and y for their $\theta$ measured in rads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [ <b>3</b> ]<br>B1ft |
|                    | 2 $y = +2\left(\frac{500}{x} - \frac{x}{24}\left(4\pi + 3\sqrt{3}\right)\right)$ Substitutes expression from (b) into<br>y term.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1                   |
|                    | $P = 3x + \frac{2\pi x}{3} + \frac{1000}{x} - \frac{\pi x}{3} - \frac{\sqrt{3}}{4}x \implies P = \frac{1000}{x} + 3x + \frac{\pi x}{3} - \frac{\sqrt{3}}{4}x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |
|                    | $\Rightarrow \underline{P = \frac{1000}{x} + \frac{x}{12} \left(4\pi + 36 - 3\sqrt{3}\right)} * $ Correct proof.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A1 *                 |
|                    | $\mathbf{D}_{\mathbf{r}} = \mathbf{d}_{\mathbf{r}} \left( \mathbf{d} \right) = \mathbf{d}_$ | [3]                  |
|                    | Parts (d) and (e) should be marked together $1000 \pm \lambda$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |
|                    | $\frac{dP}{x} \rightarrow \frac{4\pi + 36 - 3\sqrt{3}}{x^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1                   |
| (d)                | $\frac{1}{dx} = -1000x^{-2} + \frac{1}{12}; = 0$ Correct differentiation (need not be simplified).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A1;                  |
|                    | Their $P' = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1                   |
|                    | $\Rightarrow x = \sqrt{\frac{1000(12)}{4\pi + 36 - 3\sqrt{3}}} \ (= 16.63392808) \qquad \sqrt{\frac{1000(12)}{4\pi + 36 - 3\sqrt{3}}} \ \text{or awrt } 17 \ \text{(may be}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1                   |
|                    | implied)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
|                    | $\left\{P = \frac{1000}{(16.63)} + \frac{(16.63)}{12} \left(4\pi + 36 - 3\sqrt{3}\right)\right\} \Longrightarrow P = 120.236 \text{ (m)}$ awrt 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A1                   |
|                    | Finds D" and considers sign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [5]<br>M1            |
| (e)                | $\frac{d^2 P}{dx^2} = \frac{2000}{x^3} > 0 \Rightarrow \text{Minimum} \qquad \frac{2000}{x^3} \text{ (need not be simplified) and } > 0 \text{ and conclusion.}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Alft                 |
|                    | Only follow through on a correct $P''$ and x in range $10 < x < 25$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [2]                  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15                   |

|              | Question 9 Notes    |                                                                                                                                                                                                                                                                                     |
|--------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a)          | M1                  | Attempts to use Area( <i>FEA</i> ) = $\frac{1}{2}x^2 \times \frac{2\pi}{3}$ (using radian angle) or $\frac{120}{360} \times \pi x^2$ (using angle in                                                                                                                                |
|              |                     | degrees)                                                                                                                                                                                                                                                                            |
|              | A1                  | $\frac{\pi x^2}{3}$ cao (Must be simplified and be their answer in part (a)) Answer only implies M1A1.                                                                                                                                                                              |
|              |                     | N.B. Area( <i>FEA</i> ) = $\frac{1}{2}x^2 \times 120$ is awarded M0A0                                                                                                                                                                                                               |
| (b)          | M1                  | An attempt to sum 3 " areas" consisting of rectangle, triangle and sector (allow slips even in dimensions) but <b>one area</b> should be correct                                                                                                                                    |
|              | 1 <sup>st</sup> A1  | Correct expression for <b>two</b> of the <b>three</b> areas listed above.                                                                                                                                                                                                           |
|              |                     | Accept any correct equivalents e.g. two correct from $\frac{1}{2}x^2 \sin\left(\frac{\pi}{3}\right)$ or $\frac{1}{4}x^2\sqrt{3}$ , $\frac{1}{2} \times \frac{2}{3}\pi x^2$ , $2xy$                                                                                                  |
|              | 2 <sup>nd</sup> A1* | This is a given answer which should be stated and should be achieved without error so all three areas must have been correct and their sum put equal to 1000 and an intermediate step of rearrangement should be present.                                                           |
| (c)          | B1ft                | Correct expression for <i>P</i> from arc length, length <i>AB</i> and three sides of rectangle in terms of both <i>x</i> and <i>y</i> with $2y$ (or $y + y$ ), $3x$ (or $x + 2x$ ) (or $x + x + x$ ), and $x\theta$ clearly listed. Allow addition after substitution of <i>y</i> . |
|              |                     | NB $\theta = \frac{2\pi}{3}$ but allow use of their consistent $\theta$ in radians (usually $\theta = \frac{\pi}{3}$ ) from parts (a) and                                                                                                                                           |
|              |                     | (b) for this mark. $120x$ or $60x$ do not get this mark.                                                                                                                                                                                                                            |
|              | M1                  | Substitutes $y = \frac{500}{x} - \frac{x}{24} (4\pi + 3\sqrt{3})$ or their unsimplified attempt at y from earlier (allow                                                                                                                                                            |
|              | A1*                 | slips e.g. sign slips) into 2y term.                                                                                                                                                                                                                                                |
| ( <b>b</b> ) | 1 <sup>st</sup> M1  | Need to see at least $\frac{1000}{2} \rightarrow \frac{\pm \lambda}{2}$                                                                                                                                                                                                             |
| (u)          | 1 <sup>st</sup> A1  | $x$ $x^2$<br>Correct differentiation of both terms (need not be simplified) Not follow through. Allow any                                                                                                                                                                           |
|              |                     | correct equivalent.                                                                                                                                                                                                                                                                 |
|              |                     | e.g. $\frac{dP}{dx} = -1000x^{-2} + \frac{\pi}{3} + 3 - \frac{\sqrt{3}}{4}$ Also allow $\frac{dP}{dx} = -1000x^{-2} + awrt 3.61$                                                                                                                                                    |
|              |                     | Check carefully as there are many correct equivalents and some have two terms in $x\pi$ to                                                                                                                                                                                          |
|              |                     | differentiate obtaining for example $\frac{2\pi}{3} - \frac{8\pi}{24}$ instead of $\frac{\pi}{3}$                                                                                                                                                                                   |
|              | 2 <sup>nd</sup> M1  | Setting their $\frac{dP}{dx} = 0$ . Do not need to find x, but if inequalities are used this mark cannot be                                                                                                                                                                         |
|              |                     | gained until candidate states or uses a value of x without inequalities. May not be explicit but                                                                                                                                                                                    |
|              |                     | may be implied by correct working and value of expression for x. May result in $x < 0$ so M1A0                                                                                                                                                                                      |
|              | 2 <sup>nd</sup> A1  | There is no requirement to write down a value for x, so this mark may be implied by a correct value for P. It may be given for a correct expression or value for x of 16.6, 16.7 or 17.                                                                                             |
|              | 3 <sup>rd</sup> A1  | Allow answers wrt 120 but not 121                                                                                                                                                                                                                                                   |
| (e)          | <b>M1</b>           | Finds $P''$ and considers sign. Follow through correct differentiation of their $P'$ (not just reduction of power)                                                                                                                                                                  |
|              | A1ft                | Need $\frac{2000}{r^3}$ and > 0 (or positive value) and conclusion. Only follow through on a correct P"                                                                                                                                                                             |
|              |                     | and a value for x in the range $10 < x < 25$ (need not see x substituted but an x should have been found)                                                                                                                                                                           |
|              |                     | If P is substituted then this is awarded M1 A0                                                                                                                                                                                                                                      |
|              |                     |                                                                                                                                                                                                                                                                                     |

| Г | )    | Т |
|---|------|---|
| - | 'IVI |   |
| • |      | • |

| PhysicsAndMathsTutor.com |         |                                                                                                                                          |  |
|--------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------|--|
|                          | Special | (d) Some candidates multiply <i>P</i> by 12 to "simplify" If they write                                                                  |  |
|                          | case    | $\frac{dP}{dx} = -12000x^{-2} + 4\pi + 36 - 3\sqrt{3} ; = 0 \text{ then solve they will get the correct } x \text{ and } P \text{ They}$ |  |
|                          |         | should be awarded M1A0M1A1A1 in part (d). If they then do part (e) writing                                                               |  |
|                          |         | $\frac{d^2 P}{dx^2} = \frac{24000}{x^3} > 0 \Rightarrow \text{Minimum They should be awarded M1A0 (so lose 2 marks in all)}$             |  |
|                          |         | If they wrote $\frac{d(12P)}{dx} = -12000x^{-2} + 4\pi + 36 - 3\sqrt{3}$ ; = 0 etc they could get full marks.                            |  |

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R  $\ensuremath{\mathsf{ORL}}$