

PMT

Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Core Mathematics 2 (6664_01)

PMT PMT

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UA038455
All the material in this publication is copyright
© Pearson Education Ltd 2014

PMT

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PMT PMT

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- L or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.

- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = ...$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

PMT PMT

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Number	Scheme				Marks	
rumoer	x 1	1.25	1.5	1.75	2	
	y 1.414	1.601	1.803	2.016	2.236	
1.(a)	At $x = 1.25$, $y = 1.601$ (only) $\begin{cases} 1.601 \text{ (May not be in the table and can score if seen as part of their working in (b))} \end{cases}$					B1 cao
	1					[1]
	$\frac{1}{2}$ × 0.25;× $\left\{1\right\}$	1.414 + 2.236 + 2	2(their 1.60	01 + 1.803 + 2.	016)}	B1; M1 A1ft
	B1; for using $\frac{1}{2} \times 0.25$ or $\frac{1}{8}$ or equivalent.	<u>M1: Stru</u> {	<u>ucture of</u>	as show	r the correct expression in following through e's y value found in	
(b)	M1 requires the correct struct value and the second bracket y values in the table with no a omit one value from $2()$ allowed (nb: an extra repeate are x values instead of y value A1ft: for the correct underlin found in part (a). Bracketing mistakes: e.g. $\left(\frac{1}{2} \times \frac{1}{4}\right) (1.414 + 2.236) + \left(\frac{1}{2} \times \frac{1}{4}\right) (1.414 + 2.236 + 2)$ Both score B1 M1 A0 unless correctly (then full marks cou	to be multiplied additional values bracket this may d term, however s. ed expression as $2(\text{their } 1.601 + 1.801 + 1$	by 2 and to . If the on r be regard r , forfeits the shown foll $1.803 + 2.01$	ds to contain to be the summer by the summer by mistake is a sed as a slip at the M mark). Sowing through $(-0.016)(-11.2)$ $(-0.016)(-13.252)$	nation of the remaining a copying error or is to not the M mark can be M0 if any values used a candidate's y value 9625)	
	Alternative: Separate trapezia may be used, and this can be marked equivalently. $\left[\frac{1}{8}(1.414+1.601) + \frac{1}{8}(1.601+1.803) + \frac{1}{8}(1.803+2.016) + \frac{1}{8}(2.016+2.236)\right]$					
	B1 for $\frac{1}{8}$ (aef), M1 for correct structure, 1st A1ft for correct expression, ft their 1.601					
	$\left\{ = \frac{1}{8}(14.49) \right\} = 1.81125$			awrt 1.81		A1
		ect answer only	, ,		11 (1) (
	If required accuracy is not	seen in (a), full	marks can	still be score	d in (b) (e.g. uses 1.6)	[4]
						Total 5

Question Number	Scheme				
	If there is no labelling, mark (a) and (b) in that order				
	$f(x) = 2x^3 - 7x^2 + 4x + 4$				
	$f(2) = 2(2)^3 - 7(2)^2 + 4(2) + 4$	Attempts f(2) or f(-2)	M1		
2. (a)	= 0, and so $(x - 2)$ is a factor.	$f(2) = 0$ with no sign or substitution errors $(2(2)^3 - 7(2)^2 + 4(2) + 4 = 0$ is sufficient) and for conclusion. Stating "hence factor" or "it is a factor" or a "tick" or "QED" or "no remainder" or "as required" are fine for the conclusion but not = 0 just underlined and not hence (2 or f(2)) is a factor . Note also that a conclusion can be implied from a <u>preamble</u> , eg: "If $f(2) = 0$, $(x - 2)$ is a factor"	A1		
	Note: Long division scores no marks in part (a). The <u>factor theorem</u> is required.				
	$f(x) = \{(x-2)\}(2x^2 - 3x - 2)$	M1: Attempts long division by $(x-2)$ or other method using $(x-2)$, to obtain $(2x^2 \pm ax \pm b)$, $a \ne 0$, even with a remainder. Working need not be seen as this could be done "by inspection." A1: $(2x^2 - 3x - 2)$	[2] M1 A1		
(b)	$= (x-2)(x-2)(2x+1) \text{ or } (x-2)^{2}(2x+1)$ or equivalent e.g. $= 2(x-2)(x-2)(x+\frac{1}{2}) \text{ or } 2(x-2)^{2}(x+\frac{1}{2})$	dM1: Factorises a 3 term quadratic. (see rule for factorising a quadratic in the General Principles for Core Maths Marking). This is dependent on the previous method mark being awarded but there must have been no remainder. Allow an attempt to solve the quadratic to determine the factors. A1: cao – needs all three factors on one line. Ignore following work (such as a solution to a quadratic equation.)	d M1 A1		
	Note = $(x-2)(\frac{1}{2}x-1)(4x+2)$ would lose the last mark as it is not fully factorised				
		y award full marks in (b)			
			[4]		
			Total 6		

Question Number	Schen	ne	Marks
3. (a)	$(2-3x)^6 = 64 + \dots$ 64 seen as the only constant term in their expansion.		B1
	$\left\{ (2-3x)^6 \right\} = (2)^6 + \frac{{}^6C_1}{}(2)^5 (-1)^6$	$-3\underline{x}$) + $\underline{{}^{6}C_{2}}(2)^{4}(-3\underline{x})^{2}$ +	<u>M1</u>
	M1: $\binom{6}{1} \times \times x$ or $\binom{6}{1} \times \times x^2$. For <u>either</u> the x term <u>or</u> the x^2 term. Requires <u>correct</u>		
	binomial coefficient in any form with the concoefficient (perhaps including powers of 2 and/o	or -3) may be wrong or missing. The terms	
	can be "listed" rather than added ${}^{6}C_{1}2^{5} - 3x + {}^{6}C_{2}2^{4} - 3x^{2} + \dots$ Scores M0		
	$C_1 Z = 3x + C_2 Z = 3x + \dots$ Scores Mo	A1: Either $-576x$ or $2160x^2$	
	$= 64 - 576x + 2160x^2 + \dots$	(Allow + -576x here)	A1A1
	= 64 - 3/6x + 2160x +	A1: Both $-576x$ and $2160x^2$	711711
		(Do not allow $+ -576x$ here)	
(-) W 2			[4]
(a) Way 2	$(2-3x)^6 = 64 + \dots$	64 seen as the only constant term in their expansion.	B1
		M1: $({}^{6}C_{1} \times \times x)$ or $({}^{6}C_{2} \times \times x^{2})$. For	
	$\left(1 - \frac{3}{2}x\right)^6 = 1 + \frac{{}^6C_1}{2}\left(\frac{-3}{2}\underline{x}\right) + \frac{{}^6C_2}{2}\left(\frac{-3}{2}\underline{x}\right)^2 + \dots$	either the x term or the x^2 term. Requires correct binomial coefficient in any form with the correct power of x, but the other part of the coefficient (perhaps including powers of 2 and/or -3) may be wrong or missing. The terms can be "listed" rather	<u>M1</u>
		than added. Ignore any extra terms.	
		A1: Either $-576x$ or $2160x^2$	
	$= 64 - 576x + 2160x^2 +$	(Allow + -576x here)	A1A1
	- 04 370x 1 2100x 1	A1: Both $-576x$ and $2160x^2$	711711
		(Do not allow $+ -576x$ here)	
(b)	Candidate writes down $\left(1+\frac{x}{2}\right)\times\left(\text{their part}\right)$	(a) answer, at least up to the term in x).	
	(Condone missing brackets)		
	$\left(1+\frac{x}{2}\right)\left(64-576x+\right)$ or $\left(1+\frac{x}{2}\right)\left(64-576x+2160x^2+\right)$ or		
	$\left(1+\frac{x}{2}\right)64-\left(1+\frac{x}{2}\right)576x \text{ or } \left(1+\frac{x}{2}\right)64-\left(1+\frac{x}{2}\right)576x+\left(1+\frac{x}{2}\right)2160x^2$		
	or $64 + 32x, -576x - 288x^2$,	$2160x^2 + 1080x^3$ are fine.	
		A1: At least 2 terms correct as shown. (Allow $+ -544x$ here)	
	$= 64 - 544x + 1872x^2 + \dots$	A1: $64 - 544x + 1872x^2$ The terms can be "listed" rather than added. Ignore any extra terms.	A1A1
		account ignore any own terms.	[3]
			Total 7
	SC: If a candidate expands in descending pow	•	
	e.g. $\{(2-3x)^6\} = (-3x)^6 + \frac{{}^6C_1}{(2-3x)^6}$	$(-3x)^{2} + \frac{C_{2}(2)(-3x)^{2} +}{(-3x)^{2}}$	

Question Number	Scheme		
4.		$M1: x^n \to x^{n+1}$	
		A1: At least one of either $\frac{x^4}{6(4)}$ or $\frac{x^{-1}}{(3)(-1)}$.	
	$\left\{ \int \left(\frac{x^3}{6} + \frac{1}{3x^2} \right) dx \right\} = \frac{x^4}{6(4)} + \frac{x^{-1}}{(3)(-1)}$	A1: $\frac{x^4}{6(4)} + \frac{x^{-1}}{(3)(-1)}$ or equivalent.	M1A1A1
		e.g. $\frac{x^4}{\frac{6}{4}} + \frac{x^{-1}}{\frac{3}{-1}}$ (they will lose the final mark	
		if they cannot deal with this correctly)	
	Note that some candidates may change	_	
	$\int \frac{x^{3}}{6} + \frac{1}{3x^{2}} dx = \int 3x^{5} + 6 dx \text{ in which case al}$	llow the M1 if $x^n \to x^{n+1}$ for their changed	
	function and allow the	M1 for limits if scored	
	$\left\{ \int_{1}^{\sqrt{3}} \left(\frac{x^3}{6} + \frac{1}{3x^2} \right) dx \right\} = \left(\frac{\left(\sqrt{3}\right)}{24} \right)$	$- + \frac{\left(\sqrt{3}\right)^{-1}}{-1(3)} - \left(\frac{\left(1\right)^{4}}{24} + \frac{\left(1\right)^{-1}}{-1(3)}\right)$	d M1
	2^{nd} d M1: For using limits of $\sqrt{3}$ and 1 on an int	tegrated expression and subtracting the correct	
	way round. The 2 nd M1 is depende		
	$= \left(\frac{9}{24} - \frac{1}{3\sqrt{3}}\right) - \left(\frac{1}{24} - \frac{1}{3}\right) = \frac{2}{3} - \frac{1}{9}\sqrt{3}$	$\frac{2}{3} - \frac{1}{9}\sqrt{3}$ or $a = \frac{2}{3}$ and $b = -\frac{1}{9}$. Allow equivalent fractions for a and/or b and 0.6 recurring and/or 0.1 recurring but do not allow $\frac{6-\sqrt{3}}{2}$	Alcso
		9	
	This final mark is cao and cso – there	e must have been no previous errors	Total 5
	Common Errors (I	Usually 3 out of 5)	10tal 5
	$\left\{ \int \left(\frac{x^3}{6} + \frac{1}{3x^2} \right) \mathrm{d}x \right\} = \int \left(\frac{x^3}{6} + 3x \right) \mathrm{d}x$	(x^{-2}) dx = $\frac{x^4}{6(4)} + \frac{3x^{-1}}{(-1)}$ M1A1A0	
	$\left\{ \int_{1}^{\sqrt{3}} \left(\frac{x^{3}}{6} + \frac{1}{3x^{2}} \right) dx \right\} = \left(\frac{\left(\sqrt{3}\right)^{4}}{24} + \frac{1}{3x^{2}} \right) dx $	$\frac{3\left(\sqrt{3}\right)^{-1}}{-1} - \left(\frac{\left(1\right)^4}{24} + \frac{3\left(1\right)^{-1}}{-1}\right) dM1$	
	$=\left(\frac{9}{24}-\frac{3}{\sqrt{3}}\right)-\left(\frac{1}{24}\right)$	$+\frac{3}{-1}$ = $\frac{10}{3}$ - $\sqrt{3}$ A0	
	$\left\{ \int \left(\frac{x^3}{6} + \frac{1}{3x^2}\right) dx \right\} = \int \left(\frac{x^3}{6} + \left(3x\right)^2\right) dx$	$\int_{0}^{-2} dx = \frac{x^4}{6(4)} + \frac{(3x)^{-1}}{(-1)} M1A1A0$	
	$\left\{ \int_{1}^{\sqrt{3}} \left(\frac{x^3}{6} + \frac{1}{3x^2} \right) dx \right\} = \left(\frac{\left(\sqrt{3}\right)^4}{24} + \frac{1}{3x^2} \right) dx = \left(\frac{1}{3} + \frac{1}{3$	$\frac{\left(3\sqrt{3}\right)^{-1}}{-1} - \left(\frac{\left(1\right)^{4}}{24} + \frac{(3\times1)^{-1}}{-1}\right) dM 1$	
	$= \left(\frac{9}{24} - \frac{1}{3\sqrt{3}}\right) - \left(\frac{1}{24}\right)$		
	Note this is the correct answer	r but follows incorrect work.	

Question Number		Scheme	Mark
5.(a)	Area $BDE = \frac{1}{2}(5)^2(1.4)$	M1: Use of the correct formula or method for the area of the sector	M1A
	$=17.5 \text{ (cm}^2)$	A1: 17.5 oe	
7 \			[2
(b)	Parts (b) and (c) can be marked together		
	$6.1^2 = 5^2 + 7.5^2 - (2 \times 5 \times 7.5 \cos DBC) \text{or} \cos DBC = \frac{5^2 + 7.5^2 - 6.1^2}{2 \times 5 \times 7.5} \text{ (or equivalent)}$		
		ent involving the angle <i>DBC</i>	.
	Angle $DBC = 0.943201$	awrt 0.943	A1
	Note that work for (b) may b	e seen on the diagram or in part (c)	Γ1
(c)	Note that candidates may work in de	grees in (c) (Angle $DBC = 54.04$ deg rees)	[2
	Area <i>CBD</i> =	$\frac{1}{2}5(7.5)\sin(0.943)$	
		Area $CBD = \frac{1}{2}5(7.5)\sin(\text{their } 0.943)$ or awrt	
	Angle $EBA = \pi - 1.4 - "0.943"$	15.2. (Note area of $CBD = 15.177$)	M1
	(Maybe seen on the diagram)	Maybe seen on the diagram) A correct method for the area of triangle <i>CBD</i> which can be implied by awrt 15.2	
	$\pi - 1.4$ – "their 0.943"		
	A value for angle <i>EBA</i> of awrt 0.8 (from 0.7985926536 or 0.7983916536) or value for angle		
	EBA of $(1.74159 their angle DBC) would imply this mark.$		
	$AB = 5\cos(\pi - 1.4 - 0.943)$		
	or $AE = 5\sin(\pi - 1.4 - 0.943)$		
		$AB = 5\cos(\pi - 1.4 - \text{their } 0.943)$	
		$AB = 5\cos(0.79859) = 3.488577938$	
		Allow M1 for $AB = \text{awrt } 3.49$	
		Or	
		$AE = 5\sin(\pi - 1.4 - \text{their } 0.943)$	
		$AE = 5\sin(0.79859) = 3.581874365688$	M1
		Allow M1 for $AE = \text{awrt } 3.58$	
		It must be clear that $\pi - 1.4 - 0.943$ is being used for angle EBA.	
		Note that some candidates use the sin rule here but it must be used correctly – do not allow mixing of degrees and	
	Area $EAB = \frac{1}{2}5\cos(\pi - 1.4 - 1.4)$	radians. "0.943") $\times 5\sin(\pi - 1.4 - "0.943")$	
	-	nt on the previous M1	dM1
		ors in finding the area of triangle EAB area EAB = awrt 6.2	
		7+ 17.5 + 6.24 = 38.92	
		awrt 38.9	Alcs
			[:
	Note that a sign error in (h) can give the ob	tuse angle (2.198) and could lead to the correct	Tota

Question Number	So	cheme	Marks	
6(a)	s 20 . 160	M1: Use of a correct S_{∞} formula	3.54.4	
	$S_{\infty} = \frac{20}{1 - \frac{7}{8}} \; ; = 160$	A1: 160	M1A1	
	Accept correct	answer only (160)		
4		Tanana a a a a a a a	[2]	
(b)	$20(1-(\frac{7}{2})^{12})$	M1: Use of a correct S_n formula with $n = 12$		
	$S_{12} = \frac{20(1-(\frac{7}{8})^{12})}{1-\frac{7}{4}}$; = 127.77324	(condone missing brackets around 7/8)	M1A1	
	$1-\frac{1}{8}$	A1: awrt 127.8		
	T & I in (b) requires all 12 terms to be cald	culated correctly for M1 and A1 for awrt 127.8		
(-)		1 1 - (GD 1) 11 - GO 7	[2	
(c)	20/1 (7\ ^N)	Applies S_N (GP only) with $a = 20$, $r = \frac{7}{8}$ and		
	$160 - \frac{20(1 - (\frac{7}{8})^N)}{1 - \frac{7}{2}} < 0.5$	"uses" 0.5 and their S_{∞} at any point in their	M1	
	$1-\frac{1}{8}$	working. (condone missing brackets around $7/8$)(Allow =, <, >, \geq , \leq) but see note below.		
	$(7)^N$ $(7)^N$ (0.5)	Attempt to isolate $+160\left(\frac{7}{8}\right)^N$ or $+\left(\frac{7}{8}\right)^N$ oe		
	$160\left(\frac{7}{8}\right)^{N} < (0.5) \text{ or } \left(\frac{7}{8}\right)^{N} < \left(\frac{0.5}{160}\right)$	(Allow =, $<$, $>$, \ge , \le) but see note below.	dM1	
	(0) (100)	Dependent on the previous M1		
		Uses the power law of logarithms or takes logs base 0.875 correctly to obtain an equation or an		
		inequality of the form		
		$N\log\left(\frac{7}{8}\right) < \log\left(\frac{0.5}{\text{their S}}\right)$		
	$N\log\left(\frac{7}{8}\right) < \log\left(\frac{0.5}{160}\right)$	$\frac{1 \log \left(\frac{1}{8} \right)}{1 \log \left(\frac{1}{1 + \log S_{\infty}} \right)}$	M1	
	(8)	or		
		$N > \log_{0.875} \left(\frac{0.5}{\text{their S}_{\infty}} \right)$		
		(Allow =, $<$, $>$, \ge , \le) but see note below.		
	$N > \frac{\log\left(\frac{0.5}{160}\right)}{\log\left(\frac{7}{8}\right)} = 43.19823 \Rightarrow N = 44$	$N = 44 \text{ (Allow } N \ge 44 \text{ but not } N > 44$	A1 cso	
	An incorrect inequality statement at any stage in a candidate's working loses the final mark.			
	Some candidates do not realise that the direct of their solution. BUT it is possible to gain	etion of the inequality is reversed in the final line full marks for using =, as long as no incorrect		
	working seen.		[4	
			Total 8	
	<u>Trial & Im</u>	provement Method in (c):		
	1^{st} M1: Attempts $160 - S_N$	or S_N with at least one value for $N > 40$		
	2^{nd} M1: Attempts $160 - S_N$ or S_N with $N = 43$ or $N = 44$			
		S_N or S_N for both $N = 43$ and $N = 44$ with both correct to 2 DP	values	
	Eg: $160 - S_{43} = \text{awrt } 0.51 \text{ and } 160 - S_{44} = \text{awrt } 0.45$			
	or $S_{43} = \text{awrt} 159.49 \text{ and } S_{44} = \text{awrt} 159.55$			
	A1: $N = 44 \cos \theta$			
	Answer of $N = 44$ only with no working scores no marks			

Question Number	Scheme			
7.	(i) $9\sin(\theta + 60^{\circ})$	$=4; 0 \le \theta < 360^{\circ}$		
/.	(ii) $2\tan x - 3\sin$	$x = 0; -\pi \le x < \pi$		
(i)	$\sin(\theta + 60^{\circ}) = \frac{4}{9}$, so $(\theta + 60^{\circ}) = 26.3877$	Sight of $\sin^{-1}\left(\frac{4}{9}\right)$ or awrt 26.4° or 0.461°	M1	
	$(\alpha = 26.3877)$	Can also be implied for $\theta = \text{awrt} - 33.6$ (i.e. $26.4 - 60$)	IVII	
	So, $\theta + 60^{\circ} = \{153.6122, 386.3877\}$	$\mathbf{\theta} + 60^{\circ} = \text{either "}180 - \text{their }\alpha$ " or " $360^{\circ} + \text{their }\alpha$ " and not for $\boldsymbol{\theta} = \text{either}$ " $180 - \text{their }\alpha$ " or " $360^{\circ} + \text{their }\alpha$ ". This can be implied by later working. The candidate's α could also be in radians but do not allow mixing of degrees and radians.	M1	
	and $\theta = \{93.6122, 326.3877\}$	A1: At least one of awrt 93.6° or awrt 326.4°	A1 A1	
	A1: Both awrt 93.6° and awrt 326.4°			
	Both answers are cso and must come from correct work			
	Ignore extra solutions outside the range. In an otherwise fully correct solution deduct the final A1for any extra solutions in range			
	and will all the real process solution declared the rains and the solutions are the real process.			
(ii)	$2\left(\frac{\sin x}{\cos x}\right) - 3\sin x = 0$	Applies $\tan x = \frac{\sin x}{\cos x}$	[4] M1	
	Note: Applies $\tan x = \frac{\sin x}{\cos x}$ can be implied by $2\tan x - 3\sin x = 0 \Rightarrow \tan x (2 - 3\cos x)$			
	$2\sin x - 3\sin x$	$2\sin x - 3\sin x \cos x = 0$		
	$\sin x(2-3\cos x)=0$			
	$\cos x = \frac{2}{3}$	$\cos x = \frac{2}{3}$	A1	
	$x = \operatorname{awrt}\{0.84, -0.84\}$	A1: One of either awrt 0.84 or awrt -0.84 A1ft: You can apply ft for $x = \pm \alpha$, where $\alpha = \cos^{-1} k$ and $-1 \le k \le 1$	A1A1ft	
	In this part of the solution, if there are any extra answers in range in an otherwise			
	correct solution	withhold the A1ft.		
	$\{\sin x = 0 \Rightarrow\} x = 0 \text{ and } -\pi$ $\{\sin x = 0 \Rightarrow\} x = 0 \text{ and } -\pi$ Solution in range. Both $x = 0$ and $-\pi$ or awrt -3.14 from $\sin x = 0$ In this part of the solution, ignore extra solutions in range.		B1	
	Note solutions are: $x = \{-3.14\}$			
	`	,		
	Ignore extra solutions outside the range For all answers in degrees in (ii) M1A1A0A1ftB0 is possible			
	Allow the use of θ in place of x in (ii)			
			[5]	
			Total 9	

Question Number	Scheme			Marks
8.	Graph of $y = 3^x$ and solving	$3^{2x} - 9(3^x) + 18$	= 0	
(a)			the three criteria correct. notes below.)	B1
			e criteria correct. notes below.)	B1
	v ▲ /		er 1: Correct shape of and at least touches the	
			er 2: Correct shape of . Must not touch the x-	
	(0, 1)	axis or have any Criteria number	turning points. er 3: (0, 1) stated or in	
	O x	Allow (1, 0) rat	ked on the y-axis. her than (0, 1) if correct" place on the y-	
		axis.	correct prace on the y-	
(a)				[2]
(b)	$(3^x)^2 - 9(3^x) + 18 = 0$	-	tic of the correct form in	
	or	•	ere " y " = 3^x or even in x	M1
	$y = 3^{x} \Rightarrow y^{2} - 9y + 18 = 0$ { $(y-6)(y-3) = 0$ or $(3^{x} - 6)(3^{x} - 3) = 0$ }	where " x " = 3^x		
	$\{(y-6)(y-3) = 0 \text{ or } (3^x-6)(3^x-3) = 0 \}$			
	$y = 6$, $y = 3$ or $3^x = 6$, $3^x = 3$	Both $y = 6$ and	y = 3.	A1
			for solving $3^x = k$	
	$\left\{3^x = 6 \Rightarrow\right\} x \log 3 = \log 6$	where $k > 0$, $k = 0$	<u> </u>	
	or $x = \frac{\log 6}{\log 3}$ or $x = \log_3 6$		$x \log 3 = \log k$ or	dM1
	$\log 3$	to give either	$x = \frac{\log k}{\log 3} \text{ or } x = \log_3 k$	
	x = 1.63092	awrt 1.63		A1cso
	Provided the first M1A1 is scored, the second		<u> </u>	
	x = 1	x = 1 stated as a working.	a solution from <i>any</i>	B1
				[5]
				Total 7

Question Number	Scheme		Marks	
	Mark (a) and (b) to	gether		
9. (a)	$OQ^2 = (6\sqrt{5})^2 + 4^2 \text{ or } OQ = \sqrt{(6\sqrt{5})^2 + 4^2} \{=14\}$	Uses the addition form of Pythagoras on $6\sqrt{5}$ and 4. Condone missing brackets on $\left(6\sqrt{5}\right)^2$	M1	
	, , , , , , , , , , , , , , , , , , ,	(Working or 14 may be seen on the diagram)		
	12	$y_Q = \sqrt{\left(\text{their } OQ\right)^2 - 11^2}$	D 61	
	$y_Q = \sqrt{14^2 - 11^2}$	Must include √ and is dependent on the first M1 and requires OQ > 11	dM1	
	$=\sqrt{75} \text{ or } 5\sqrt{3}$	$\sqrt{75}$ or $5\sqrt{3}$	A1cso	
			[3]	
(b)	$(x-11)^{2} + (y-5\sqrt{3})^{2} = 16$ Allow in expanded form for	M1: $(x \pm 11)^2 + (y \pm \text{their } k)^2 = 4^2$ Equation must be of this form and must use x and y not other letters. k could be their last answer to part (a). Allow their $k \neq 0$ or just the letter k . A1: $(x-11)^2 + (y-5\sqrt{3})^2 = 16$ or $(x-11)^2 + (y-5\sqrt{3})^2 = 4^2$ NB $5\sqrt{3}$ must come from correct work in (a) and allow awrt 8.66	- M1A1	
	e.g. $x^2 - 22x + 121 + y^2 - 10$			
	5.g. % 22% 121	·->	[2]	
			Total 5	
	Watch out for:			
	(a) $OQ = \sqrt{(6\sqrt{5})^2}$ $y_Q = \sqrt{46 - 11^2} \text{ M}$ $y_Q = \sqrt{7}$ (b) $(-11)^2 + (-5)^2$	$M0 \text{ (OQ } < 11)$ $\overline{5} \text{ A0}$		
	(b) $(x-11)^2 + (y-5\sqrt{3})^2 = 16 \text{ M1A0}$			

Question Number	Scheme		Scheme		
10. (a)	$\frac{1}{2}(9x+6x)4x$ or $2x\times15x$ or $\left(\frac{1}{2}4x\times(9x-6x)+6x\times4x\right)$ or $6x^2+24x^2$ or $\left(9x\times4x-\frac{1}{2}4x\times(9x-6x)\right)$ or $36x^2-6x^2$	trapezium. Note that 3 incorrect w If there is a area of the	t attempt at the area of a $0x^2$ on its own or $30x^2$ from ork e.g. $5x \times 6x$ is M0. clear intention to find the trapezium correctly allow the A1 can be withheld if there s.	M1A1cso	
	$\Rightarrow 30x^2y = 9600 \Rightarrow y = \frac{9600}{30x^2} \Rightarrow y = \frac{320}{x^2} *$		t proof with at least one e step and no errors seen. quired.		
				[2]	
(b)	$(S =) \frac{1}{2} (9x + 6x) 4x + \frac{1}{2} (9x + 6x) 4x + 6xy + 9xy + 5xy + 4xy$			M1A1	
	M1: An attempt to find the area of six faces of the prism. The 2 trapezia may be combined as				
	$(9x + 6x)4x$ or $60x^2$ and the 4 other faces may be combined as $24xy$ but all six faces must be				
	included. There must be attempt at the areas of two A1: Correct expression Allow just $(S =) 60x^2 +$	trapezia that a n in any form.	are dimensionally correct.		
	$y = \frac{320}{x^2} \Rightarrow (S =) 30x^2 + 1$		`	M1	
	Substitutes $y = \frac{320}{x^2}$ into their expression for S (may	be done earli	er). S should have at least		
	one x^2 term and one xy term but there may be other terms which may be dimensionally incorrect.				
	So, $(S =) 60x^2 + \frac{7680}{x} *$		Correct solution only. "S = " is not required here.	A1* cso	
				[4]	

10(c)	$\frac{dS}{dx} = 120x - 7680x^{-2} \left\{ = 120x - \frac{7680}{x^2} \right\}$	M1: Either $60x^2 \rightarrow 120x$ or $\frac{7680}{x} \rightarrow \frac{\pm \lambda}{x^2}$ A1: Correct differentiation (need not be	M1
		A1: Correct differentiation (need not be simplified).	A1 aef
		M1: $S' = 0$ and "their $x^3 = \pm$ value"	
		or "their $x^{-3} = \pm$ value" Setting their $\frac{dS}{dx} = 0$	
		and "candidate's ft <i>correct</i> power of $x = a$ value". The power of $x = a$	
	$120x - \frac{7680}{x^2} = 0$ $\Rightarrow x^3 = \frac{7680}{120}; = 64 \Rightarrow x = 4$	with their differentiation. If inequalities are used this mark cannot be gained until candidate states value of x or S from their x without inequalities. $S' = 0$ can be implied by	
		$120x = \frac{7680}{x^2}$. Some may spot that $x = 4$ gives $S' = 0$ and provided they clearly show $S'(4) = 0$	M1A1cso
		allow this mark as long as S' is correct. (If S'	
		is incorrect this method is allowed if their derivative is clearly zero for their value of <i>x</i>)	
		A1: $x = 4$ only ($x^3 = 64 \implies x = \pm 4$ scores A0)	
		Note that the value of x is not explicitly required	
		so the use of $x = \sqrt[3]{64}$ to give $S = 2880$ would	
	Note some candidates stop here and do	imply this mark. not go on to find S – maximum mark is 4/6	
	Note some candidates stop here and de	Substitute candidate's value of $x \neq 0$ into a	
	$\begin{cases} x = 4, \end{cases}$	formula for S. Dependent on both previous M marks.	dd M1
	$S = 60(4)^2 + \frac{7680}{4} = 2880 \text{ (cm}^2\text{)}$	2880 cso (Must come from correct work)	A1 cao and cso
			[6]

10(d)	M1: Attempt $S''(x^n \to x^{n-1})$ and considers	
	sign. This mark requires an attempt at the second derivative and some consideration of its sign . There does not necessarily need to be any substitution. An attempt to solve $S'' = 0$ is M0 A1: $120 + \frac{15360}{x^3}$ and > 0 and conclusion. Requires a correct second derivative of $120 + \frac{15360}{x^3}$ (need not be simplified) and a valid reason (e.g. > 0), and conclusion. Only follow through a correct second derivative i.e. x may be incorrect but must be positive and/or S'' may have been <u>evaluated</u> incorrectly.	M1A1ft
	A correct S'' followed by $S''("4") = "360"$ therefore minimum would score no marks in (d)	
	A correct S'' followed by $S''("4") = "360"$ which is positive therefore minimum would score	
	both marks	
		[2]
	Note parts (c) and (d) can be marked together.	
		Total 14